We introduce a new neural signal representation designed for the efficient high-resolution representation of large-scale signals. The key innovation in our multiscale implicit neural representation (MINER) is an internal representation via a Laplacian pyramid, which provides a sparse multiscale representation of the signal that captures orthogonal parts of the signal across scales. We leverage the advantages of the Laplacian pyramid by representing small disjoint patches of the pyramid at each scale with a tiny MLP. This enables the capacity of the network to adaptively increase from coarse to fine scales, and only represent parts of the signal with strong signal energy. The parameters of each MLP are optimized from coarse-to-fine scale which results in faster approximations at coarser scales, thereby ultimately an extremely fast training process. We apply MINER to a range of large-scale signal representation tasks, including gigapixel images and very large point clouds, and demonstrate that it requires fewer than 25% of the parameters, 33% of the memory footprint, and 10% of the computation time of competing techniques such as ACORN to reach the same representation error.
翻译:我们引入一个新的神经信号代表器, 以高效的高分辨率代表大型信号。 我们的多尺度隐性神经代表器( MINER) 的关键创新是通过拉普拉西亚金字塔的内部代表器( MINER ), 它通过一个拉普拉西亚金字塔, 提供了捕获跨尺度信号正方形部分的信号的稀少多尺度代表器。 我们利用拉普拉西亚金字塔的优势, 在每个尺度上代表金字塔的小型微小 MLP, 代表金字塔的小型脱节补丁。 这让网络能够适应性地从粗糙升至微缩尺度, 并且仅代表信号能量强的信号部分。 每个 MLP 的参数都是从粗皮到线的优化, 从而在粗皮标尺上导致更快的近距离, 最终是一个非常快速的训练过程。 我们把 MINER 用于一系列大型信号代表任务, 包括千兆像图像和非常大的点云。 我们证明它需要不到25%的参数、 33%的记忆足迹和10%的计算时间的10%的计算方法, 如 ACORN 。