Signal Temporal Logic (STL) is an efficient technique for describing temporal constraints. It can play a significant role in robotic manipulation, for example, to optimize the robot performance according to task-dependent metrics. In this paper, we evaluate several STL robustness metrics of interest in robotic manipulation tasks and discuss a case study showing the advantages of using STL to define complex constraints. Such constraints can be understood as cost functions in task optimization. We show how STL-based cost functions can be optimized using a variety of off-the-shelf optimizers. We report initial results of this research direction on a simulated planar environment.
翻译:信号时空逻辑(STL)是描述时间限制的有效技术,在机器人操作中可以发挥重要作用,例如,根据任务基准优化机器人性能。在本文件中,我们评估了对机器人操作任务感兴趣的若干STL强力度指标,并讨论了一项案例研究,表明使用STL界定复杂限制的好处。这些限制可以理解为任务优化的成本功能。我们展示了如何利用各种现成优化器优化基于STL的成本功能。我们报告了这一研究方向的初步结果,介绍了模拟平板环境。