A hallmark of visual analytics is its ability to support users in translating broad, open-ended analytic questions (e.g., "is our company succeeding?") into verifiable hypotheses that can be tested from the available data (e.g., "our total revenue increased this past quarter"). However, the process of converting open-ended analytic questions into testable hypotheses is complex and often ill-defined. Beyond high-level descriptions, the visual analytics literature lacks a formalization that can be operationalized for analysis and automation. In this paper, we propose a novel grammar to express hypothesis-based analytic questions for visual analysis. Drawing from prior work in science and education, our grammar defines a formal way to express sets of verifiable hypotheses as a "hypothesis space". Our proposed use of hypothesis spaces contributes a new lens to unify concepts of user goals, the capabilities of a dataset, visual analysis, and testable hypotheses. As a result, we can reformulate abstract classes of visual analysis goals, such as analytic and data-related tasks, in a way that is suitable for analysis and automation. We demonstrate use cases of our grammar in real-world analytic applications including VAST challenges, Kaggle competitions, and pre-existing task taxonomies. Finally, we provide design opportunities in which our grammar can be operationalized to articulate analysis tasks, evaluate visualization systems, and support hypothesis-based reasoning in visual analytic tools.


翻译:视觉分析的标志在于它能够支持用户将广泛、开放的直观分析问题(例如“我们的公司成功了吗?” )转化为从现有数据可以测试的可核查假设(例如,“我们的总收入在上一个季度增加” )。然而,将开放的分析性问题转换为可测试假设的过程既复杂又往往定义不当。除了高层描述外,视觉分析文献缺乏一种正规化,可以用于分析和自动化。在本文中,我们提出一个新的语法来表达基于假设的直观分析分析问题,用于视觉分析。从科学和教育的先前工作中,我们的语法定义了一种正式的方式来表达一套可核查的假说,作为“假说空间”。我们提议的假设空间为统一用户目标概念、数据集能力、视觉分析以及可测试的假说提供了新的透镜。因此,我们可以重新配置视觉分析的类目标,例如基于假设的直观分析和数据分析,用于视觉分析。 我们用数字分析的方式, 包括数据自动化,我们用一个我们的方法来展示我们的数据- 数字分析,最后,我们用一个数字分析,我们的数据-自动化的方式,我们用一个我们的数据-自动化来展示我们的数据- 任务。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
0+阅读 · 2022年6月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员