Immersive video, such as virtual reality (VR) and multi-view videos, is growing in popularity. Its wireless streaming is an instance of general multicast, extending conventional unicast and multicast, whose effective design is still open. This paper investigates general rate splitting for general multicast. Specifically, we consider a multi-carrier single-cell wireless network where a multi-antenna base station (BS) communicates to multiple single-antenna users via general multicast. We consider linear beamforming at the BS and joint decoding at each user in the slow fading and fast fading scenarios. In the slow fading scenario, we consider the maximization of the weighted sum average rate, which is a challenging nonconvex stochastic problem with numerous variables. To reduce computational complexity, we decouple the original nonconvex stochastic problem into multiple nonconvex deterministic problems, one for each system channel state. Then, we propose an iterative algorithm for each deterministic problem to obtain a Karush-Kuhn-Tucker (KKT) point using the concave-convex procedure (CCCP). In the fast fading scenario, we consider the maximization of the weighted sum ergodic rate. This problem is more challenging than the one for the slow fading scenario, as it is not separable. First, we propose a stochastic iterative algorithm to obtain a KKT point using stochastic successive convex approximation (SSCA) and the exact penalty method. Then, we propose two low-complexity iterative algorithms to obtain feasible points with promising performance for two cases of channel distributions using approximation and CCCP. The proposed optimization framework generalizes the existing ones for rate splitting for various types of services. Finally, we numerically show substantial gains of the proposed solutions over existing schemes in both scenarios.


翻译:虚拟现实( VR) 和多视图视频等闪烁视频正在越来越受欢迎。 其无线流是一个普通多播、 扩展常规单向和多播的事例, 其有效设计仍然开放。 本文调查了通用多播的通用速率分裂。 具体地说, 我们考虑一个多驱动器单细胞无线网络, 多连接器基站( BS) 通过一般多播向多个单线网点用户传递信息。 我们考虑在 BS 上进行线性成像, 在缓慢淡化和快速淡化的情景中, 每个用户都进行联合解码。 在缓慢淡化的情景中, 我们考虑将加权平均速率平均速率最大化。 为了降低计算的复杂性, 我们将原非连接器的预感问题分解为多个非连接器问题, 每个系统版本都提议一个。 然后, 我们提议对每个确定性框架进行一个迭代位算法, 以获得Karush- Kuhn- 速率( KKT) 快速流算法( 快速流算) 使用一个更具有挑战性的变现变现的变现的变现程序。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月3日
Arxiv
0+阅读 · 2022年8月3日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员