Explaining artificial intelligence or machine learning models is an increasingly important problem. For humans to stay in the loop and control such systems, we must be able to understand how they interact with the world. This work proposes using known or assumed causal structure in the input variables to produce simple and practical explanations of supervised learning models. Our explanations -- which we name Causal Dependence Plots or CDP -- visualize how the model output depends on changes in a given predictor \emph{along with any consequent causal changes in other predictors}. Since this causal dependence captures how humans often think about input-output dependence, CDPs can be powerful tools in the explainable AI or interpretable ML toolkit and contribute to applications including scientific machine learning and algorithmic fairness. CDP can also be used for model-agnostic or black-box explanations.
翻译:解释人工智能或机器学习模型是一个日益重要的问题。要让人类留在循环圈中并控制这些系统,我们必须能够理解他们如何与世界互动。 这项工作提议在输入变量中使用已知或假设的因果结构来对受监督的学习模型进行简单实用的解释。 我们称之为Causal Defatydudience Plots 或 CDP 的解释将模型输出如何取决于特定预测器\ emph{ 和其他预测器的任何随之产生的因果变化。 由于这种因果依赖性捕捉了人类如何经常思考投入-产出依赖性, CDP 可以成为可解释的AI 或可解释的 ML 工具包中的有力工具, 并有助于应用, 包括科学机器学习和算法公正。 CDP 也可以用于模型- 敏感或黑盒解释 。</s>