Electroencephalography-to-Text generation (EEG-to-Text), which aims to directly generate natural text from EEG signals has drawn increasing attention in recent years due to the enormous potential for Brain-computer interfaces (BCIs). However, the remarkable discrepancy between the subject-dependent EEG representation and the semantic-dependent text representation poses a great challenge to this task. To mitigate this challenge, we devise a Curriculum Semantic-aware Contrastive Learning strategy (C-SCL), which effectively re-calibrates the subject-dependent EEG representation to the semantic-dependent EEG representation, thus reducing the discrepancy. Specifically, our C-SCL pulls semantically similar EEG representations together while pushing apart dissimilar ones. Besides, in order to introduce more meaningful contrastive pairs, we carefully employ curriculum learning to not only craft meaningful contrastive pairs but also make the learning progressively. We conduct extensive experiments on the ZuCo benchmark and our method combined with diverse models and architectures shows stable improvements across three types of metrics while achieving the new state-of-the-art. Further investigation proves not only its superiority in both the single-subject and low-resource settings but also its robust generalizability in the zero-shot setting.


翻译:为了减轻这一挑战,我们设计了一项旨在直接产生来自EEG信号的自然文本的电文到电文生成(EEG-Text)课程,近年来,由于脑计算机界面的巨大潜力,这引起了越来越多的注意。然而,依赖主题的EEEG代表制和依赖语义的文本代表制之间的显著差异,给这项任务带来了巨大的挑战。为了减轻这一挑战,我们设计了一种基于主题的EEEG代表制(EEEG-Text-Text),有效地将依赖主题的EEEG代表制重新校正,从而减少了差异。具体地说,我们的C-SCL将相似的EEG代表制相拉在一起,同时将不同的代表制分开。此外,为了引入更有意义的对比性对配,我们谨慎地使用课程学习不仅设计有意义的对比配对,而且还使学习逐步进行。我们在ZuCo基准和我们的方法与不同模式和结构的结合中进行了广泛的实验,显示三种类型的衡量标准在新状态下稳步改进,但也缩小了差异。此外,在新的水平上也证明了其单一的优势。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
25+阅读 · 2021年3月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员