The All-Pairs Max-Flow problem has gained significant popularity in the last two decades, and many results are known regarding its fine-grained complexity. Despite this, wide gaps remain in our understanding of the time complexity for several basic variants of the problem. In this paper, we aim to bridge this gap by providing algorithms, conditional lower bounds, and non-reducibility results. Our main result is that for most problem settings, deterministic reductions based on the Strong Exponential Time Hypothesis (SETH) cannot rule out $n^{4-o(1)}$ time algorithms under a hypothesis called NSETH. As a step towards ruling out even $mn^{1+\varepsilon-o(1)}$ SETH lower bounds for undirected graphs with unit node-capacities, we design a new randomized $O(m^{2+o(1)})$ time combinatorial algorithm. This is an improvement over the recent $O(m^{11/5+o(1)})$ time algorithm [Huang et al., STOC 2023] and matching their $m^{2-o(1)}$ lower bound (up to subpolynomial factors), thus essentially settling the time complexity for this setting of the problem. More generally, our main technical contribution is the insight that $st$-cuts can be verified quickly, and that in most settings, $st$-flows can be shipped succinctly (i.e., with respect to the flow support). This is a key idea in our non-reducibility results, and it may be of independent interest.


翻译:全源最大流问题在过去20年中变得越来越受欢迎,针对其精细复杂度的许多结果已公开。尽管如此,对于该问题的多个基本变体,我们仍对其时间复杂度了解不足。在本文中,我们旨在通过提供算法、条件下界和不可规约结果来弥合这一鸿沟。我们的主要结果是,针对大多数问题设置,基于强指数时间假设(SETH)的确定性约简无法在假设NSETH下排除O($n^{4-o(1)}$)时间的算法。为了在具有单位节点容量的无向图中排除甚至 $mn^{1+\varepsilon-o(1)}$ SETH 下界,我们设计了一种新的随机 O($m^{2+o(1)}$)时间的组合算法。这是对最近的 $O(m^{11/5+o(1)})$ 时间算法 [Huang等,STOC 2023] 的改进,并与他们的 $m^{2-o(1)}$ 下界(上至亚多项式因子)相匹配,从而实质上解决了该问题的时间复杂度。更一般地说,我们的主要技术贡献是认识到 $st$-割可以快速验证,并且在大多数情况下,$st$-流可以简洁地运输(即与流支持相关)。这是我们不可规约的结果中的一个关键思想,可能具有独立的兴趣。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年6月26日
专知会员服务
51+阅读 · 2020年12月14日
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员