Deep neural networks (DNNs) have the advantage that they can take into account a large number of parameters, which enables them to solve complex tasks. In computer vision and speech recognition, they have a better accuracy than common algorithms, and in some tasks, they boast an even higher accuracy than human experts. With the progress of DNNs in recent years, many other fields of application such as diagnosis of diseases and autonomous driving are taking advantage of them. The trend at DNNs is clear: The network size is growing exponentially, which leads to an exponential increase in computational effort and required memory size. For this reason, optimized hardware accelerators are used to increase the performance of the inference of neuronal networks. However, there are various neural network hardware accelerator platforms, such as graphics processing units (GPUs), application specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs). Each of these platforms offer certain advantages and disadvantages. Also, there are various methods for reducing the computational effort of DNNs, which are differently suitable for each hardware accelerator. In this article an overview of existing neural network hardware accelerators and acceleration methods is given. Their strengths and weaknesses are shown and a recommendation of suitable applications is given. In particular, we focus on acceleration of the inference of convolutional neural networks (CNNs) used for image recognition tasks. Given that there exist many different hardware architectures. FPGA-based implementations are well-suited to show the effect of DNN optimization methods on accuracy and throughput. For this reason, the focus of this work is more on FPGA-based implementations.


翻译:深心神经网络(DNNS)的优点是,它们能够考虑到大量参数,从而能够解决复杂的任务。在计算机视觉和语音识别中,它们比普通算法更准确,在某些任务中,它们比人类专家的精度更高。随着近年来DNNN的进度,许多其它应用领域,如疾病诊断和自主驱动等,正在利用它们。DNNUS的趋势是显而易见的:网络规模正在成倍增长,导致计算努力和所需内存规模的急剧增加。为此,使用了优化的硬件加速器来提高神经网络的推论性能。然而,有各种神经网络的精度更准确性。有各种神经网络的硬件加速器平台,如图形处理器(GPUps)、应用特定集成电路(ASIC)和野外可编程门阵列(FPGAs)的进步。每个平台都有一定的优势和劣势。此外,有多种方法可以减少 DNNNW的计算工作,而每个硬件的精度对每个硬度准确性网络的精确性效果是不同的。在这个文章的精度网络中展示了硬度和硬度的精度。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
12+阅读 · 2020年8月3日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员