We consider a network coding setting where some of the messages and edges have fixed alphabet sizes, that do not change when we increase the common alphabet size of the rest of the messages and edges. We prove that the problem of deciding whether such network admits a coding scheme is undecidable. This can be considered as a partial solution to the conjecture that network coding (without fixed-size messages/edges) is undecidable. The proof, which makes heavy use of analogies with digital circuits, is essentially constructing a digital circuit of logic gates and flip-flops within a network coding model that is capable of simulating an arbitrary Turing machine.
翻译:我们认为,在网络编码设置中,有些电文和边缘具有固定的字母大小,当我们增加其余电文和边缘的共同字母大小时不会改变。我们证明,决定这种网络是否接受编码办法的问题不可确定。这可以视为网络编码(没有固定大小的电文/屏蔽)不可量化的假设的一个部分解决办法。大量使用数字电路模拟的证据基本上是在能够模拟任意图灵机器的网络编码模型中建立一个由逻辑门和翻转版组成的数字电路。