We present new greedy and beam search heuristic methods to find small-size $k$-dominating sets in graphs. The methods are inspired by a new problem formulation which explicitly highlights a certain structure of the problem. An empirical evaluation of the new methods is done with respect to two existing methods, using instances of graphs corresponding to street networks. The k-domination problem with respect to this class of graphs can be used to model real-world facility location problem scenarios. For the classic minimum dominating set ($1$-domination) problem, all except one methods perform similarly, which is due to their equivalence in this particular case. However, for the k-domination problem with k>1, the new methods outperform the benchmark methods, and the performance gain is more significant for larger values of k.
翻译:我们提出了新的贪婪和光束搜索外观方法,以在图表中找到以美元为主的小型数据集。这些方法受到新的问题提法的启发,该提法明确突出问题的某种结构。对两种现有方法进行了经验性评估,使用与街道网络相对应的图表实例对新方法进行了经验性评估。关于这一类图的K-授粉问题可用于模拟真实世界设施定位问题情景。对于典型的最低支配数据集($-倾销)问题,除一种方法外,所有方法都表现类似,因为在这个特定案例中,这些方法是等效的。然而,对于K>1的K-授粉问题,新方法优于基准方法,业绩收益对于更大的 k 值来说更为显著。