Zeon algebras have proven to be useful for enumerating structures in graphs, such as paths, trails, cycles, matchings, cliques, and independent sets. In contrast to an ordinary graph, in which each edge connects exactly two vertices, an edge (or, "hyperedge") can join any number of vertices in a hypergraph. In game theory, hypergraphs are called simple games. Hypergraphs have been used for problems in biology, chemistry, image processing, wireless networks, and more. In the current work, zeon ("nil-Clifford") and "idem-Clifford" graph-theoretic methods are generalized to hypergraphs. In particular, zeon and idem-Clifford methods are used to enumerate paths, trails, independent sets, cliques, and matchings in hypergraphs. An approach for finding minimum hypergraph transversals is developed, and zeon formulations of some open hypergraph problems are presented.
翻译:Zeon 代数已证明有助于在图表中罗列结构, 如路径、 轨迹、 循环、 匹配、 晶体和独立集。 与普通的图形相比, 每个边缘完全连接两个脊椎, 边缘( 或“ 超级” ) 可以在高压图中加入任何数个脊椎 。 在游戏理论中, 高压图被称为简单游戏 。 在生物学、 化学、 图像处理、 无线网络等等的案例中, 使用超强图来查找问题 。 在目前的工作中, Zeon ("nil- Clifford") 和“ idem- Clifford” 图形理论方法被普遍用于超高压图。 特别是, Zeon 和 idem- Clifford 方法被用于在高压图中罗列路径、 线索、 独立集、 晶体和匹配 。 正在开发一种方法来查找最小的高压截面半径, 并展示一些公开高压问题的 Zeon 配方 。