This paper considers over-the-air federated learning (OTA-FL). OTA-FL exploits the superposition property of the wireless medium, and performs model aggregation over the air for free. Thus, it can greatly reduce the communication cost incurred in communicating model updates from the edge devices. In order to fully utilize this advantage while providing comparable learning performance to conventional federated learning that presumes model aggregation via noiseless channels, we consider the joint design of transmission scaling and the number of local iterations at each round, given the power constraint at each edge device. We first characterize the training error due to such channel noise in OTA-FL by establishing a fundamental lower bound for general functions with Lipschitz-continuous gradients. Then, by introducing an adaptive transceiver power scaling scheme, we propose an over-the-air federated learning algorithm with joint adaptive computation and power control (ACPC-OTA-FL). We provide the convergence analysis for ACPC-OTA-FL in training with non-convex objective functions and heterogeneous data. We show that the convergence rate of ACPC-OTA-FL matches that of FL with noise-free communications.
翻译:本文探讨了超航空联合学习(OTA-FL) 。 OTA-FL利用无线介质的叠加特性,对空气进行免费的模型集成。 因此,它可以大大降低从边缘设备传输模型更新过程中产生的通信成本。 为了充分利用这一优势,同时为假定通过无噪音渠道进行模型集成的传统联合学习提供可比的学习性能,我们考虑到每个边缘装置的功率限制,考虑联合设计传输比例和每轮当地迭代数。我们首先通过与Lipschitz连续梯度建立基本较低的一般功能约束,来描述OTA-FL的这种频道噪音造成的培训错误。然后,我们提出一个适应性移动式收发器能力扩缩计划,以联合适应计算和电源控制(ACC-OTA-FLLA)的超空联学性学习算法。我们用非集装箱客观功能和多种数据的训练为ACPC-OTA-FLA-FL提供了趋同分析。我们表明ACPC-OTA-FL的趋同无噪音通信的趋同率率。