Recently, the community has witnessed numerous datasets built for developing and testing state estimators. However, for some applications such as aerial transportation or search-and-rescue, the contact force or other disturbance must be perceived for robust planning robust control, which is beyond the capacity of these datasets. This paper introduces a Visual-Inertial-Dynamical(VID) dataset, not only focusing on traditional six degrees of freedom (6DOF) pose estimation but also providing dynamical characteristics of the flight platform for external force perception or dynamics-aided estimation. The VID dataset contains hard synchronized imagery and inertial measurements, with accurate ground truth trajectories for evaluating common visual-inertial estimators. Moreover, the proposed dataset highlights the measurements of rotor speed and motor current, dynamical inputs, and ground truth 6-axis force data to evaluate external force estimation. To the best of our knowledge, the proposed VID dataset is the first public dataset containing visual-inertial and complete dynamical information for pose and external force evaluation. The dataset and related open source files are available at \url{https://github.com/ZJU-FAST-Lab/VID-Dataset}.


翻译:最近,社区目睹了许多为开发和测试国家测算员而建立的数据集,然而,对于空中运输或搜索和救援等一些应用,必须把接触力量或其他扰动视为强有力的规划强力控制,这超出了这些数据集的能力。本文介绍了视觉-人工-心脏(VID)数据集,不仅侧重于传统的六度自由(6DOF)构成了估计,而且还为外部力量感知或动态辅助估计提供了飞行平台的动态特征。VID数据集包含硬同步图像和惯性测量,有准确的地面真象轨迹,用于评价共同的视觉-放射估计仪。此外,拟议的数据集突出显示转动速度和运动、动态输入和地面真象(6DOF)数据的测量,用以评价外部力量估计。据我们所知,拟议的VID数据集是第一个包含视觉-内光学和完整的动态信息用于外力评估的公共数据集。数据集和相关开放源文件可在以下查阅:数据集和开放源文件ST-ST-RV/DAV。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
专知会员服务
155+阅读 · 2021年3月6日
专知会员服务
52+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Cayley图数据库的可视化(Visualize)
Python开发者
5+阅读 · 2019年9月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Generating Rationales in Visual Question Answering
Arxiv
5+阅读 · 2020年4月4日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
Cayley图数据库的可视化(Visualize)
Python开发者
5+阅读 · 2019年9月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
相关论文
Top
微信扫码咨询专知VIP会员