There is a well-known connection between hypergraphs and bipartite graphs, obtained by treating the incidence matrix of the hypergraph as the biadjacency matrix of a bipartite graph. We use this connection to describe and analyse a rejection sampling algorithm for sampling simple uniform hypergraphs with a given degree sequence. Our algorithm uses, as a black box, an algorithm $\mathcal{A}$ for sampling bipartite graphs with given degrees, uniformly or nearly uniformly, in (expected) polynomial time. The expected runtime of the hypergraph sampling algorithm depends on the (expected) runtime of the bipartite graph sampling algorithm $\mathcal{A}$, and the probability that a uniformly random bipartite graph with given degrees corresponds to a simple hypergraph. We give some conditions on the hypergraph degree sequence which guarantee that this probability is bounded below by a positive constant.
翻译:将高光度测算仪的发生率矩阵作为双面图的对称矩阵。 我们使用此连接来描述和分析一个拒绝抽样算法, 用于用特定程度序列对简单统一的测高仪进行取样。 我们的算法作为黑盒使用一个算法 $\ mathcal{A}$, 用于在(预期的)多元时间以不同程度统一或几乎一致的方式对双面图进行取样。 高光测算法的预期运行时间取决于双面图取样算法 $\ mathcal{A}$ (预期) 的运行时间, 以及一个具有特定程度的单一随机双面图与简单的测高光值相对应的可能性。 我们在高光度序列上设定了某些条件, 保证此概率被正常数约束在下 。