There is a well-known connection between hypergraphs and bipartite graphs, obtained by treating the incidence matrix of the hypergraph as the biadjacency matrix of a bipartite graph. We use this connection to describe and analyse a rejection sampling algorithm for sampling simple uniform hypergraphs with a given degree sequence. Our algorithm uses, as a black box, an algorithm $\mathcal{A}$ for sampling bipartite graphs with given degrees, uniformly or nearly uniformly, in (expected) polynomial time. The expected runtime of the hypergraph sampling algorithm depends on the (expected) runtime of the bipartite graph sampling algorithm $\mathcal{A}$, and the probability that a uniformly random bipartite graph with given degrees corresponds to a simple hypergraph. We give some conditions on the hypergraph degree sequence which guarantee that this probability is bounded below by a positive constant.


翻译:将高光度测算仪的发生率矩阵作为双面图的对称矩阵。 我们使用此连接来描述和分析一个拒绝抽样算法, 用于用特定程度序列对简单统一的测高仪进行取样。 我们的算法作为黑盒使用一个算法 $\ mathcal{A}$, 用于在(预期的)多元时间以不同程度统一或几乎一致的方式对双面图进行取样。 高光测算法的预期运行时间取决于双面图取样算法 $\ mathcal{A}$ (预期) 的运行时间, 以及一个具有特定程度的单一随机双面图与简单的测高光值相对应的可能性。 我们在高光度序列上设定了某些条件, 保证此概率被正常数约束在下 。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【CVPR2021】跨模态检索的概率嵌入
专知会员服务
20+阅读 · 2021年3月2日
【ICML2020】图神经网络基准,53页ppt,NUS-Xavier Bresson
专知会员服务
58+阅读 · 2020年7月18日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月11日
Query Embedding on Hyper-relational Knowledge Graphs
Arxiv
4+阅读 · 2021年6月17日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【CVPR2021】跨模态检索的概率嵌入
专知会员服务
20+阅读 · 2021年3月2日
【ICML2020】图神经网络基准,53页ppt,NUS-Xavier Bresson
专知会员服务
58+阅读 · 2020年7月18日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员