First-order logic (FO) can express many algorithmic problems on graphs, such as the independent set and dominating set problem, parameterized by solution size. On the other hand, FO cannot express the very simple algorithmic question of whether two vertices are connected. We enrich FO with connectivity predicates that are tailored to express algorithmic graph properties that are commonly studied in parameterized algorithmics. By adding the atomic predicates $conn_k (x, y, z_1 ,\ldots, z_k)$ that hold true in a graph if there exists a path between (the valuations of) $x$ and $y$ after (the valuations of) $z_1,\ldots,z_k$ have been deleted, we obtain separator logic $FO + conn$. We show that separator logic can express many interesting problems such as the feedback vertex set problem and elimination distance problems to first-order definable classes. We then study the limitations of separator logic and prove that it cannot express planarity, and, in particular, not the disjoint paths problem. We obtain the stronger disjoint-paths logic $FO + DP$ by adding the atomic predicates $disjoint-paths_k [(x_1, y_1 ),\ldots , (x_k , y_k )]$ that evaluate to true if there are internally vertex disjoint paths between (the valuations of) $x_i$ and $y_i$ for all $1 \le i \le k$. Disjoint-paths logic can express the disjoint paths problem, the problem of (topological) minor containment, the problem of hitting (topological) minors, and many more. Finally, we compare the expressive power of the new logics with that of transitive closure logics and monadic second-order logic.


翻译:第一顺序逻辑( FO) 可以表达图表上的许多算法问题, 比如独立设置和主导设置问题, 以解决方案大小为参数 。 另一方面, FO 无法表达两个脊椎是否连接的非常简单的算法问题 。 我们用连接性上游使FO 丰富, 以参数化算法通常研究的算法属性。 通过添加原子上游 $con_k (x, y, z_ 1,\ldots, z_k) $, 以图中保留真实路径。 如果在( 美元和美元估值) 之后有一条路径( ) 美元和 美元之间的路径, 美元和 美元 美元( k) 的路径, z_k 美元( 美元, 美元), 我们得到更强烈的线性逻辑, 美元- 和 美元( 美元) 电流流 。 我们用更强的 数字- 和 美元( 美元) 电流流, 我们用更强的电流 解的, 和 美元- 美元- 电流化的 解算 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Python · SVM(三)· 核方法
机器学习研究会
7+阅读 · 2017年8月8日
使用 MPI for Python 并行化遗传算法
Python开发者
5+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
7+阅读 · 2021年10月19日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
7+阅读 · 2019年6月20日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Python · SVM(三)· 核方法
机器学习研究会
7+阅读 · 2017年8月8日
使用 MPI for Python 并行化遗传算法
Python开发者
5+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员