Building unified conversational agents has been a long-standing goal of the dialogue research community. Most previous works only focus on a subset of various dialogue tasks. In this work, we aim to build a unified foundation model which can solve massive diverse dialogue tasks. To achieve this goal, we first collect a large-scale well-labeled dialogue dataset from 73 publicly available datasets. In addition to this dataset, we further propose two dialogue-oriented self-supervised tasks, and finally use the mixture of supervised and self-supervised datasets to train our foundation model. The supervised examples make the model learn task-specific skills, while the self-supervised examples make the model learn more general skills. We evaluate our model on various downstream dialogue tasks. The experimental results show that our method not only improves the ability of dialogue generation and knowledge distillation, but also the representation ability of models.
翻译:建立统一的对话代理器一直是对话研究界的长期目标。 以往的工作大多只侧重于一系列不同的对话任务。 在这项工作中, 我们的目标是建立一个统一的基建模型, 解决大规模多样的对话任务。 为了实现这一目标, 我们首先从73个公开提供的数据集中收集一个大尺度的标签良好的对话数据集。 除了这个数据集外, 我们还进一步提议两项面向对话的自我监督任务, 最后使用监督的和自我监督的数据集组合来培训我们的基建模型。 受监督的示例让模型学习特定任务的技能, 而由自我监督的示例让模型学习更多一般的技能。 我们评估了我们关于各种下游对话任务的模式。 实验结果显示,我们的方法不仅提高了对话生成和知识蒸馏的能力,而且提高了模型的代表性能力。