Estimating 3D human pose and shape from a single image is highly under-constrained. To address this ambiguity, we propose a novel prior, namely kinematic dictionary, which explicitly regularizes the solution space of relative 3D rotations of human joints in the kinematic tree. Integrated with a statistical human model and a deep neural network, our method achieves end-to-end 3D reconstruction without the need of using any shape annotations during the training of neural networks. The kinematic dictionary bridges the gap between in-the-wild images and 3D datasets, and thus facilitates end-to-end training across all types of datasets. The proposed method achieves competitive results on large-scale datasets including Human3.6M, MPI-INF-3DHP, and LSP, while running in real-time given the human bounding boxes.


翻译:以单一图像来估计3D人类的外形和形状是高度受限制的。 为了解决这一模糊问题,我们提议了一个新的前题,即动画字典,它明确规范了运动树中人关节相对3D旋转的解决方案空间。与人类统计模型和深神经网络相结合,我们的方法实现了端至端3D重建,无需在神经网络培训中使用任何形状说明。动画字典弥合了电动图象和3D数据集之间的差距,从而便利了所有类型数据集的端至端培训。拟议方法在包括人文3.6M、MPI-INF-3DHP和LSP在内的大型数据集上取得了竞争性结果,同时实时运行给人文捆绑框。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年12月18日
VIP会员
相关VIP内容
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员