This paper introduces the problem of Private Information Retrieval with Reusable and Single-use Side Information (PIR-RSSI). In this problem, one or more remote servers store identical copies of a set of $K$ messages, and there is a user that initially knows $M$ of these messages, and wants to privately retrieve one other message from the set of $K$ messages. The objective is to design a retrieval scheme in which the user downloads the minimum amount of information from the server(s) while the identity of the message wanted by the user and the identities of an $M_1$-subset of the $M$ messages known by the user (referred to as reusable side information) are protected, but the identities of the remaining $M_2=M-M_1$ messages known by the user (referred to as single-use side information) do not need to be protected. The PIR-RSSI problem reduces to the classical Private Information Retrieval (PIR) problem when ${M_1=M_2=0}$, and reduces to the problem of PIR with Private Side Information or PIR with Side Information when ${M_1\geq 1,M_2=0}$ or ${M_1=0,M_2\geq 1}$, respectively. In this work, we focus on the single-server setting of the PIR-RSSI problem. We characterize the capacity of this setting for the cases of ${M_1=1,M_2\geq 1}$ and ${M_1\geq 1,M_2=1}$, where the capacity is defined as the maximum achievable download rate over all PIR-RSSI schemes. Our results show that for sufficiently small values of $K$, the single-use side information messages can help in reducing the download cost only if they are kept private; and for larger values of $K$, the reusable side information messages cannot help in reducing the download cost.
翻译:本文介绍私人信息检索 { 可重复使用 和 单一使用 侧端信息 的私钥检索 { 问题。 在此问题上, 一个或多个远程服务器存储一套美元信息( 被称为可重复使用侧信息) 的相同副本; 但有一个用户最初知道$M$的用户, 并且希望私下从一套美元信息中检索另一条信息。 目的是设计一个检索方案, 让用户从服务器下载最小量信息 { 可重复使用 { 和 单用 侧信息 { PIR 。 用户想要的信息的身份和 $$$$的子集 。 ( 被称为可重复使用侧信息 ) 。 一个或多个远程服务器的 $2= M_ 1 的信息( 被称为单一使用侧信息 ) 不需要保护 。 PIR 问题仅降为普通私人信息 里程问题, 如果 $_ M_ 1 = M= M= 0, 帮助在 1 或 PIR 的边端信息 中, 以 1_ m= m= 最低 格式 显示 1 。