The parametric g-formula is an approach to estimating causal effects of sustained treatment strategies from observational data. An often cited limitation of the parametric g-formula is the g-null paradox: a phenomenon in which model misspecification in the parametric g-formula is guaranteed under the conditions that motivate its use (i.e., when identifiability conditions hold and measured time-varying confounders are affected by past treatment). Many users of the parametric g-formula know they must acknowledge the g-null paradox as a limitation when reporting results but still require clarity on its meaning and implications. Here we revisit the g-null paradox to clarify its role in causal inference studies. In doing so, we present analytic examples and a simulation-based illustration of the bias of parametric g-formula estimates under the conditions associated with this paradox. Our results highlight the importance of avoiding overly parsimonious models for the components of the g-formula when using this method.
翻译:参数g-公式是一种从观测数据中估计持续治疗战略的因果关系的方法。参数g-公式经常被引用的限制是g-null悖论:在一种现象中,参数g-公式模型的错误特性在促使其使用的条件下得到保证(即,当可识别性条件保持并测量了时间变化的混淆者受到过去治疗的影响时)。参数g-公式的许多用户知道,在报告结果时,他们必须承认G-null悖论是一个限制,但是仍然需要澄清其含义和影响。在这里,我们重新审视g-null悖论,以澄清其在因果推断研究中的作用。在这样做时,我们提出分析性的例子,并模拟地说明参数g-公式估计数在与这一悖论相关的条件下的偏差。我们的结果突出表明,在使用这种方法时,必须避免格-公式各组成部分出现过于偏差的模型。