Contrastive learning (CL) pre-trains general-purpose encoders using an unlabeled pre-training dataset, which consists of images or image-text pairs. CL is vulnerable to data poisoning based backdoor attacks (DPBAs), in which an attacker injects poisoned inputs into the pre-training dataset so the encoder is backdoored. However, existing DPBAs achieve limited effectiveness. In this work, we propose new DPBAs called CorruptEncoder to CL. CorruptEncoder uses a theory-guided method to create optimal poisoned inputs to maximize attack effectiveness. Our experiments show that CorruptEncoder substantially outperforms existing DPBAs. In particular, CorruptEncoder is the first DPBA that achieves more than 90% attack success rates with only a few (3) reference images and a small poisoning ratio (0.5%). Moreover, we also propose a defense, called localized cropping, to defend against DPBAs. Our results show that our defense can reduce the effectiveness of DPBAs, though it slightly sacrifices the utility of the encoder.


翻译:使用由图像或图像文本配对组成的未贴标签的培训前一般目的编码器进行编程前对比性学习。 CL 很容易受到基于后门攻击的数据中毒(DPBAs) 。 攻击者向培训前的数据集注入有毒投入,使编码器被后门击退。 但是, 现有的DPBAs 取得了有限的效果。 在这项工作中, 我们提议新的DPBAs 将Corrupt Encoder 称为 CL. Corrupt Encoder 改为 CL. Corrupt Enccoder 使用理论指导的方法来创造最佳的有毒投入, 以最大限度地提高攻击效果。 我们的实验显示, Corrupt Encoder 大大优于现有的DPBAs 。 特别是, Corrupt Encoder 是第一个DPBA, 仅达到90%以上攻击成功率的DPBA, 参考图像和小中毒率( 0.5% ) 。 此外,我们还提议一种防御, 称为局部裁剪裁剪裁, 以防御。 我们的结果表明, 我们的防御可以降低DPBA的效用, 尽管它略牺牲了编码的效用。</s>

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2020年10月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员