Comparing metric measure spaces (i.e. a metric space endowed with aprobability distribution) is at the heart of many machine learning problems. The most popular distance between such metric measure spaces is theGromov-Wasserstein (GW) distance, which is the solution of a quadratic assignment problem. The GW distance is however limited to the comparison of metric measure spaces endowed with a probability distribution.To alleviate this issue, we introduce two Unbalanced Gromov-Wasserstein formulations: a distance and a more tractable upper-bounding relaxation.They both allow the comparison of metric spaces equipped with arbitrary positive measures up to isometries. The first formulation is a positive and definite divergence based on a relaxation of the mass conservation constraint using a novel type of quadratically-homogeneous divergence. This divergence works hand in hand with the entropic regularization approach which is popular to solve large scale optimal transport problems. We show that the underlying non-convex optimization problem can be efficiently tackled using a highly parallelizable and GPU-friendly iterative scheme. The second formulation is a distance between mm-spaces up to isometries based on a conic lifting. Lastly, we provide numerical experiments onsynthetic examples and domain adaptation data with a Positive-Unlabeled learning task to highlight the salient features of the unbalanced divergence and its potential applications in ML.


翻译:比较测量空间(即具有概率分布的测量空间)是许多机器学习问题的核心所在。这种测量空间之间最受欢迎的距离是Gromov-Wasserstein(GW)距离,这是四方分布问题的解决办法。但是,GW距离限于比较具有概率分布的测量空间。为了缓解这一问题,我们引入了两种不平衡的Gromov-Wasserstein配方:一个距离和一个更可伸缩的上行宽放。两者都允许比较装有任意积极措施的测量空间,直到异式。第一个配方是以大规模保护限制的松散为基础的积极和明确的差异,使用一种新型的四方分布式混合差异的解决办法。这种差异与用来解决大规模最佳运输问题的昆虫调控方规范方法同时起作用。我们表明,可以用一个高度平行的和对GPUPU友好的互换计划来有效解决潜在的非convex优化问题。第二个配方之间是毫米空间间距宽度测量空间之间的距离,而其域间断度是用于最终的正位缩缩缩模型。

1
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2021年2月12日
生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
149+阅读 · 2020年12月30日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
PyTorch 实战:计算 Wasserstein 距离
Python开发者
4+阅读 · 2019年3月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2021年2月12日
生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
149+阅读 · 2020年12月30日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
相关资讯
PyTorch 实战:计算 Wasserstein 距离
Python开发者
4+阅读 · 2019年3月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员