Federated learning is a machine learning training paradigm that enables clients to jointly train models without sharing their own localized data. However, the implementation of federated learning in practice still faces numerous challenges, such as the large communication overhead due to the repetitive server-client synchronization and the lack of adaptivity by SGD-based model updates. Despite that various methods have been proposed for reducing the communication cost by gradient compression or quantization, and the federated versions of adaptive optimizers such as FedAdam are proposed to add more adaptivity, the current federated learning framework still cannot solve the aforementioned challenges all at once. In this paper, we propose a novel communication-efficient adaptive federated learning method (FedCAMS) with theoretical convergence guarantees. We show that in the nonconvex stochastic optimization setting, our proposed FedCAMS achieves the same convergence rate of $O(\frac{1}{\sqrt{TKm}})$ as its non-compressed counterparts. Extensive experiments on various benchmarks verify our theoretical analysis.


翻译:联邦学习是一种机器学习培训模式,使客户能够联合培训模型,而不必分享他们自己的本地数据,然而,在实践中实施联邦学习仍面临许多挑战,例如由于服务器-客户同步的重复和基于SGD的模型更新缺乏适应性,通信管理费用巨大;尽管提出了通过梯度压缩或四分化降低通信成本的各种方法,并提议FedAdam等联合型适应性优化剂增加适应性,但目前的联邦学习框架仍然无法同时解决上述所有挑战。 在本文件中,我们提出了具有理论趋同保证的新的通信高效适应性联邦学习方法(FedCAMS),我们表明,在非康克斯吸附式优化环境下,我们拟议的FedCAMMS实现了与其非压抑性对应方相同的美元(frac{1unsqrt{TKm ⁇ )的趋同率。关于各种基准的广泛实验证实了我们的理论分析。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月24日
EFFGAN: Ensembles of fine-tuned federated GANs
Arxiv
0+阅读 · 2022年6月23日
Arxiv
0+阅读 · 2022年6月23日
Arxiv
13+阅读 · 2021年7月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员