In this work, maximum sum-rank distance (MSRD) codes and linearized Reed-Solomon codes are extended to finite chain rings. It is proven that linearized Reed-Solomon codes are MSRD over finite chain rings, extending the known result for finite fields. For the proof, several results on the roots of skew polynomials are extended to finite chain rings. These include the existence and uniqueness of minimum-degree annihilator skew polynomials and Lagrange interpolator skew polynomials. A general cubic-complexity sum-rank Welch-Berlekamp decoder and a quadratic-complexity sum-rank syndrome decoder (under some assumptions) are then provided over finite chain rings. The latter also constitutes the first known syndrome decoder for linearized Reed--Solomon codes over finite fields. Finally, applications in Space-Time Coding with multiple fading blocks and physical-layer multishot Network Coding are discussed.
翻译:在本研究中,将最大和秩距离(MSRD)代码和线性化Reed-Solomon代码扩展到有限链环上。证明了线性化Reed-Solomon代码在有限链环上是MSRD,扩展了有限域的已知结果。为了证明这一点,将一些关于斜多项式根的结果扩展到有限链环上。这些包括最小度数湮灭器斜多项式和Lagrange插值器斜多项式的存在性和唯一性。然后,提供了一种通用的三次复杂度和秩Welch-Berlekamp译码器和一种二次复杂度和秩综合译码器(在某些假设下)在有限链环上。后者也构成了已知的线性化Reed-Solomon代码的第一个综合译码器,适用于有限域。最后,讨论了在具有多个衰落块的空时编码中和物理层多发网络编码中的应用。