In this work, maximum sum-rank distance (MSRD) codes and linearized Reed-Solomon codes are extended to finite chain rings. It is proven that linearized Reed-Solomon codes are MSRD over finite chain rings, extending the known result for finite fields. For the proof, several results on the roots of skew polynomials are extended to finite chain rings. These include the existence and uniqueness of minimum-degree annihilator skew polynomials and Lagrange interpolator skew polynomials. A general cubic-complexity sum-rank Welch-Berlekamp decoder and a quadratic-complexity sum-rank syndrome decoder (under some assumptions) are then provided over finite chain rings. The latter also constitutes the first known syndrome decoder for linearized Reed--Solomon codes over finite fields. Finally, applications in Space-Time Coding with multiple fading blocks and physical-layer multishot Network Coding are discussed.


翻译:在本研究中,将最大和秩距离(MSRD)代码和线性化Reed-Solomon代码扩展到有限链环上。证明了线性化Reed-Solomon代码在有限链环上是MSRD,扩展了有限域的已知结果。为了证明这一点,将一些关于斜多项式根的结果扩展到有限链环上。这些包括最小度数湮灭器斜多项式和Lagrange插值器斜多项式的存在性和唯一性。然后,提供了一种通用的三次复杂度和秩Welch-Berlekamp译码器和一种二次复杂度和秩综合译码器(在某些假设下)在有限链环上。后者也构成了已知的线性化Reed-Solomon代码的第一个综合译码器,适用于有限域。最后,讨论了在具有多个衰落块的空时编码中和物理层多发网络编码中的应用。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
89+阅读 · 2021年6月29日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
40+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ECCV 2022 | 底层视觉新任务:Blind Image Decomposition
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
手把手教你入门深度强化学习(附链接&代码)
THU数据派
76+阅读 · 2019年7月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
89+阅读 · 2021年6月29日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
40+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
ECCV 2022 | 底层视觉新任务:Blind Image Decomposition
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
手把手教你入门深度强化学习(附链接&代码)
THU数据派
76+阅读 · 2019年7月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员