We propose a new scheme to reconstruct the baryon acoustic oscillations (BAO) signal, which contains key cosmological information, based on deep convolutional neural networks (CNN). Trained with almost no fine-tuning, the network can recover large-scale modes accurately in the test set: the correlation coefficient between the true and reconstructed initial conditions reaches $90\%$ at $k\leq 0.2 h\mathrm{Mpc}^{-1}$, which can lead to significant improvements of the BAO signal-to-noise ratio down to $k\simeq0.4h\mathrm{Mpc}^{-1}$. Since this new scheme is based on the configuration-space density field in sub-boxes, it is local and less affected by survey boundaries than the standard reconstruction method, as our tests confirm. We find that the network trained in one cosmology is able to reconstruct BAO peaks in the others, i.e. recovering information lost to non-linearity independent of cosmology. The accuracy of recovered BAO peak positions is far less than that caused by the difference in the cosmology models for training and testing, suggesting that different models can be distinguished efficiently in our scheme. It is very promising that Our scheme provides a different new way to extract the cosmological information from the ongoing and future large galaxy surveys.


翻译:我们提出了一个重建巴龙声振荡信号的新计划,该信号包含关键宇宙信息,其基础是深演神经网络(CNN)。经过几乎没有微调的训练,网络可以在测试集中准确恢复大规模模式:真实与重建初始条件之间的相关系数达到90美元(单位:leq 0.2 h\mathrm{Mpc ⁇ -1}$),这可能导致BAO信号与噪音比率大幅改善,降至$k\sime0.4hm{Mpc ⁇ _1}美元。由于这个新计划基于子箱中的配置-空间密度字段,因此它比标准重建方法受调查边界影响的程度要小,正如我们的测试所证实的那样。我们发现,在一个宇宙学上受过培训的网络能够重建其他宇宙学中的BAO峰值,即恢复失去的非线性信息,而独立于宇宙学的非线性信息。 回收的BAO峰值位置的准确性远远小于我们宇宙空间系新模型的差别,因此,我们的宇宙系新模型的精确度模型可以提供不同的方法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年3月30日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员