We study computable PAC (CPAC) learning as introduced by Agarwal et al. (2020). First, we consider the main open question of finding characterizations of proper and improper CPAC learning. We give a characterization of a closely related notion of strong CPAC learning, and provide a negative answer to the COLT open problem posed by Agarwal et al. (2021) whether all decidably representable VC classes are improperly CPAC learnable. Second, we consider undecidability of (computable) PAC learnability. We give a simple general argument to exhibit such ndecidability, and initiate a study of the arithmetical complexity of learnability. We briefly discuss the relation to the undecidability result of Ben-David et al. (2019), that motivated the work of Agarwal et al.
翻译:我们研究了Agarwal等人(2020年)提出的可比较的PAC(CPAC)学习(CPAC),我们研究了Agarwal等人(2020年)提出的可比较的PAC(CPAC)学习。首先,我们考虑了找到适当和不当的CPAC学习特征的主要未决问题。我们对密切关联的CPAC学习概念进行了定性,并对Agarwal等人(2021年)提出的COLT开放问题提供了否定的答案,即所有可分解的可比较的VC类是否都可不适当地学习CPAC。第二,我们认为PAC(可比较的)学习不可更改。我们提出一个简单的一般性论点,以展示这种可辨别性,并开始研究学习的算术复杂性。我们简要讨论了促使Agarwal等人(2019年)工作的Ben-David等人(2019年)与不可降解结果的关系。