In this work we study the orbit recovery problem over $SO(3)$, where the goal is to recover a band-limited function on the sphere from noisy measurements of randomly rotated copies of it. This is a natural abstraction for the problem of recovering the three-dimensional structure of a molecule through cryo-electron tomography. Symmetries play an important role: Recovering the function up to rotation is equivalent to solving a system of polynomial equations that comes from the invariant ring associated with the group action. Prior work investigated this system through computational algebra tools up to a certain size. However many statistical and algorithmic questions remain: How many moments suffice for recovery, or equivalently at what degree do the invariant polynomials generate the full invariant ring? And is it possible to algorithmically solve this system of polynomial equations? We revisit these problems from the perspective of smoothed analysis whereby we perturb the coefficients of the function in the basis of spherical harmonics. Our main result is a quasi-polynomial time algorithm for orbit recovery over $SO(3)$ in this model. We analyze a popular heuristic called frequency marching that exploits the layered structure of the system of polynomial equations by setting up a system of {\em linear} equations to solve for the higher-order frequencies assuming the lower-order ones have already been found. The main questions are: Do these systems have a unique solution? And how fast can the errors compound? Our main technical contribution is in bounding the condition number of these algebraically-structured linear systems. Thus smoothed analysis provides a compelling model in which we can expand the types of group actions we can handle in orbit recovery, beyond the finite and/or abelian case.


翻译:在这项工作中,我们研究的是 $SO(3)($SO(3)$) 的轨道回收问题, 目的是从随机旋转的复制件的杂音测量中恢复球体上的带宽功能。 这是一个自然的抽象, 解决了通过冷冻- 电子对映法恢复分子的三维结构的问题。 配对法可以发挥重要作用 : 将功能恢复到旋转, 相当于解决一个多式方程式系统系统, 这个系统来自与集团行动相关的恒定环。 先前的工作是通过计算代数工具到一定大小来调查这个系统的带宽功能的。 然而, 许多统计和算法问题仍然存在: 有多少时刻足以恢复, 或者等量的多式分子通过冷冻- 多式对立体结构。 我们从简单分析的角度审视了这些问题, 我们从这些组的恢复系数中渗透了这些群系的解析系数, 在球体主调法基础中, 我们的主要结果是一个准多式的线性时间算法时间算法, 在 ASO(3)($r) 结构中, 分析一个频率系统是如何在模型中, 分析一个更低的解式系统, 。 我们的解变式系统是如何在模型中, 分析一个叫做的变式变式变式的变式系统, 分析一个叫做的变式的变式的变式的变式的变式的变式的变式的变式的变式系统, 。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月14日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员