In this work we study the orbit recovery problem over $SO(3)$, where the goal is to recover a band-limited function on the sphere from noisy measurements of randomly rotated copies of it. This is a natural abstraction for the problem of recovering the three-dimensional structure of a molecule through cryo-electron tomography. Symmetries play an important role: Recovering the function up to rotation is equivalent to solving a system of polynomial equations that comes from the invariant ring associated with the group action. Prior work investigated this system through computational algebra tools up to a certain size. However many statistical and algorithmic questions remain: How many moments suffice for recovery, or equivalently at what degree do the invariant polynomials generate the full invariant ring? And is it possible to algorithmically solve this system of polynomial equations? We revisit these problems from the perspective of smoothed analysis whereby we perturb the coefficients of the function in the basis of spherical harmonics. Our main result is a quasi-polynomial time algorithm for orbit recovery over $SO(3)$ in this model. We analyze a popular heuristic called frequency marching that exploits the layered structure of the system of polynomial equations by setting up a system of {\em linear} equations to solve for the higher-order frequencies assuming the lower-order ones have already been found. The main questions are: Do these systems have a unique solution? And how fast can the errors compound? Our main technical contribution is in bounding the condition number of these algebraically-structured linear systems. Thus smoothed analysis provides a compelling model in which we can expand the types of group actions we can handle in orbit recovery, beyond the finite and/or abelian case.
翻译:在这项工作中,我们研究的是 $SO(3)($SO(3)$) 的轨道回收问题, 目的是从随机旋转的复制件的杂音测量中恢复球体上的带宽功能。 这是一个自然的抽象, 解决了通过冷冻- 电子对映法恢复分子的三维结构的问题。 配对法可以发挥重要作用 : 将功能恢复到旋转, 相当于解决一个多式方程式系统系统, 这个系统来自与集团行动相关的恒定环。 先前的工作是通过计算代数工具到一定大小来调查这个系统的带宽功能的。 然而, 许多统计和算法问题仍然存在: 有多少时刻足以恢复, 或者等量的多式分子通过冷冻- 多式对立体结构。 我们从简单分析的角度审视了这些问题, 我们从这些组的恢复系数中渗透了这些群系的解析系数, 在球体主调法基础中, 我们的主要结果是一个准多式的线性时间算法时间算法, 在 ASO(3)($r) 结构中, 分析一个频率系统是如何在模型中, 分析一个更低的解式系统, 。 我们的解变式系统是如何在模型中, 分析一个叫做的变式变式变式的变式系统, 分析一个叫做的变式的变式的变式的变式的变式的变式的变式的变式的变式系统, 。