Multi-instrument Automatic Music Transcription (AMT), or the decoding of a musical recording into semantic musical content, is one of the holy grails of Music Information Retrieval. Current AMT approaches are restricted to piano and (some) guitar recordings, due to difficult data collection. In order to overcome data collection barriers, previous AMT approaches attempt to employ musical scores in the form of a digitized version of the same song or piece. The scores are typically aligned using audio features and strenuous human intervention to generate training labels. We introduce NoteEM, a method for simultaneously training a transcriber and aligning the scores to their corresponding performances, in a fully-automated process. Using this unaligned supervision scheme, complemented by pseudo-labels and pitch-shift augmentation, our method enables training on in-the-wild recordings with unprecedented accuracy and instrumental variety. Using only synthetic data and unaligned supervision, we report SOTA note-level accuracy of the MAPS dataset, and large favorable margins on cross-dataset evaluations. We also demonstrate robustness and ease of use; we report comparable results when training on a small, easily obtainable, self-collected dataset, and we propose alternative labeling to the MusicNet dataset, which we show to be more accurate. Our project page is available at https://benadar293.github.io
翻译:多语种自动音乐记录(AMT),或将音乐记录解码成语义音乐内容,是音乐信息检索的神圣标志之一。当前的AMT方法仅限于钢琴和(某些)吉他录音,因为数据收集困难。为了克服数据收集障碍,以前AMT方法试图使用同一歌曲或歌曲的数字化版本的音乐评分。通常使用音频特征和艰苦的人类干预来生成培训标签,这些评分是匹配的。我们引入了 NoteEM,这是同时培训音频和将评分与其相应的性能相匹配的一种方法,采用完全自动化的程序。我们使用这种不统一的监督方案,辅之以假标签和声道变增强,我们的方法能够以前所未有的准确性和工具多样性的方式进行现场录音培训。我们仅使用合成数据和不协调的监督,报告MAPS数据集的注释的准确度,以及交叉数据评分的巨大有利幅度。我们还展示了稳健性和易用性;我们报告在小型、易被选的、可选的、可比较的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可调的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可选的、可的、可选的、可选的、可选的、可选的、可选的、可的、可选的、可的、可的、可的、可选的、可的、可选的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可的、可