We prove various approximation theorems with polynomials whose coefficients with respect to the Bernstein basis of a given order are all integers. In the extreme, we draw the coefficients from the set $\{ \pm 1\}$ only. We show that for any Lipschitz function $f:[0,1] \to [-1,1]$ and for any positive integer $n$, there are signs $\sigma_0,\dots,\sigma_n \in \{\pm 1\}$ such that $$\left |f(x) - \sum_{k=0}^n \sigma_k \, \binom{n}{k} x^k (1-x)^{n-k} \right | \leq \frac{C (1+|f|_{\mathrm{Lip}})}{1+\sqrt{nx(1-x)}} ~\mbox{ for all } x \in [0,1].$$ These polynomial approximations are not constrained by saturation of Bernstein polynomials, and we show that higher accuracy is indeed achievable for smooth functions: If $f$ has a Lipschitz $(s{-}1)$st derivative, then accuracy of order $O(n^{-s/2})$ is achievable with $\pm 1$ coefficients provided $\|f \|_\infty < 1$, and accuracy of order $O(n^{-s})$ is achievable with unrestricted integer coefficients. Our approximations are constructive in nature.
翻译:我们用一个定顺序的 Bernstein 基点的系数为整数。 最极端的是, 我们从设置 $ $\\ pm 1\\\ $ 美元中提取系数。 我们显示, 对于任何 Lipschitz 函数 $f : [0, 1\\ to [ 1, 1, 1美元 和任何正整数$来说, 符号$\ sgma_ 0,\ dots,\ sgma_ n\ pm% 1 美元, 等于 left = f( x) -\ sum_ k= 0n\ sgma_ k\ ss gma_ k\,\ binom{ n\ k} x k ( 1 - xx)\ k}\right\\ leq\ \ frac{ C ( 1\ f\\ mathrm{ Lip}), 任何正整数 的符号 $\ { sqr& n_ fxx} =_\ n_\ n__ $____ blalalal_ ral_ ral_ r_ r____ ral_ ral_ ral_ ral_ ral_ ral_ r_ r_ ral_ 美元, ral_ 美元, r_ ral_ r_ r_ r______________ r_ r_ r_ r_ r__ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r__ r___ r______ r_ r_ r_ r________ r__________________________________ ral_ ral____________ r_ r_ r_ r_ r_ r_ r______ r___