We propose a new framework to solve online optimization and learning problems in unknown and uncertain dynamical environments. This framework enables us to simultaneously learn the uncertain dynamical environment while making online decisions in a quantifiably robust manner. The main technical approach relies on the theory of distributional robust optimization that leverages adaptive probabilistic ambiguity sets. However, as defined, the ambiguity set usually leads to online intractable problems, and the first part of our work is directed to find reformulations in the form of online convex problems for two sub-classes of objective functions. To solve the resulting problems in the proposed framework, we further introduce an online version of the Nesterov accelerated-gradient algorithm. We determine how the proposed solution system achieves a probabilistic regret bound under certain conditions. Two applications illustrate the applicability of the proposed framework.
翻译:我们提出了在未知和不确定的动态环境中解决在线优化和学习问题的新框架。 这个框架使我们能够同时学习不确定的动态环境,同时以可量化的稳健方式作出在线决定。 主要的技术方法依赖于分配性强的优化理论,这种理论能够利用适应性概率的模糊组合。然而,根据定义,所设定的模糊性通常会导致在线棘手问题,我们工作的第一部分旨在找到以两个次级目标功能的在线二次曲线问题为形式的重拟。为了解决拟议框架中出现的问题,我们进一步引入了Nesterov加速梯级算法的在线版本。我们决定了拟议解决方案系统如何在某些条件下实现概率性遗憾的约束。有两个应用程序说明了拟议框架的适用性。