Seemingly simple natural language requests to a robot are generally underspecified, for example "Can you bring me the wireless mouse?" Flat images of candidate mice may not provide the discriminative information needed for "wireless." The world, and objects in it, are not flat images but complex 3D shapes. If a human requests an object based on any of its basic properties, such as color, shape, or texture, robots should perform the necessary exploration to accomplish the task. In particular, while substantial effort and progress has been made on understanding explicitly visual attributes like color and category, comparatively little progress has been made on understanding language about shapes and contours. In this work, we introduce a novel reasoning task that targets both visual and non-visual language about 3D objects. Our new benchmark, ShapeNet Annotated with Referring Expressions (SNARE) requires a model to choose which of two objects is being referenced by a natural language description. We introduce several CLIP-based models for distinguishing objects and demonstrate that while recent advances in jointly modeling vision and language are useful for robotic language understanding, it is still the case that these image-based models are weaker at understanding the 3D nature of objects -- properties which play a key role in manipulation. We find that adding view estimation to language grounding models improves accuracy on both SNARE and when identifying objects referred to in language on a robot platform, but note that a large gap remains between these models and human performance.


翻译:向机器人提出的自然语言请求似乎简单,但通常没有被详细指定,例如“你能不能给我带来无线鼠鼠标?”等。候选小鼠的平板图像可能不会提供“无线”所需要的歧视性信息。世界及其中的对象不是平坦的图像,而是复杂的三维形状。如果人类要求基于其任何基本属性的物体,如颜色、形状或质地等,机器人应进行必要的探索以完成任务。特别是,虽然在理解明确视觉属性(如颜色和类别)方面已经做了大量努力和进展,但在理解形状和轮廓语言语言的语言方面却取得了相对较少的进展。在这项工作中,我们引入了一个新的推理任务,即针对3D对象的视觉和非视觉对象都是。我们的新基准,即用“显示表达表达表达”(SNARE)需要一种模型来选择哪个对象被自然语言描述为参考。我们引入了几个基于CLIP的模型来区分对象,并表明虽然在联合建模和语言方面的最近进展对于机器人语言理解是有用的,但相对来说进展甚微。在基于图像的模型的模型中,这些模型仍然是一种较弱的特性,我们在大的模型中,我们理解了一种主要的模型中,在选择中,在选择中,我们仍然可以找到一种主要的特性的模型。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年4月11日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2017年11月21日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员