The 3D-aware image synthesis focuses on conserving spatial consistency besides generating high-resolution images with fine details. Recently, Neural Radiance Field (NeRF) has been introduced for synthesizing novel views with low computational cost and superior performance. While several works investigate a generative NeRF and show remarkable achievement, they cannot handle conditional and continuous feature manipulation in the generation procedure. In this work, we introduce a novel model, called Class-Continuous Conditional Generative NeRF ($\text{C}^{3}$G-NeRF), which can synthesize conditionally manipulated photorealistic 3D-consistent images by projecting conditional features to the generator and the discriminator. The proposed $\text{C}^{3}$G-NeRF is evaluated with three image datasets, AFHQ, CelebA, and Cars. As a result, our model shows strong 3D-consistency with fine details and smooth interpolation in conditional feature manipulation. For instance, $\text{C}^{3}$G-NeRF exhibits a Fr\'echet Inception Distance (FID) of 7.64 in 3D-aware face image synthesis with a $\text{128}^{2}$ resolution. Additionally, we provide FIDs of generated 3D-aware images of each class of the datasets as it is possible to synthesize class-conditional images with $\text{C}^{3}$G-NeRF.
翻译:3D-aware 图像合成侧重于维护空间一致性,同时制作高分辨率图像并提供详细细节。最近,引入了神经辐射场(NERF),以综合计算成本低和性能优异的新观点。虽然一些作品调查了基因性内光并显示了显著的成就,但它们无法在生成程序中处理有条件和连续的特征操纵。在这项工作中,我们引入了一种新型模型,叫做“传统持续有条件生成内光化内化” ($\text{C ⁇ 3}G-NERF),它可以通过向生成者和制片人投放有条件的功能,来合成有条件操纵的摄影现实3D相异图像。拟议的美元-G-NERF($Text{C}$3$G-NERF, 以三个图像数据集(AFHQ、CelebA和Cars)来评估。结果,我们的模型显示3D-C-C-NFS(R_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_764_BAR_BAR_BAR_BAR__BAR_BAR_BAR__BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BK_BAR_BAR_BAR_BAR_BK_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BI_BAR_BAR_BAR_BAR_BAR_G_