Quadratic Unconstrained Binary Optimization (QUBO) is a broad class of optimization problems with many practical applications. To solve its hard instances in an exact way, known classical algorithms require exponential time and several approximate methods have been devised to reduce such cost. With the growing maturity of quantum computing, quantum algorithms have been proposed to speed up the solution by using either quantum annealers or universal quantum computers. Here we apply the divide-and-conquer approach to reduce the original problem to a collection of smaller problems whose solutions can be assembled to form a single Polynomial Binary Unconstrained Optimization instance with fewer variables. This technique can be applied to any QUBO instance and leads to either an all-classical or a hybrid quantum-classical approach. When quantum heuristics like the Quantum Approximate Optimization Algorithm (QAOA) are used, our proposal leads to a double advantage: a substantial reduction of quantum resources, specifically an average of ~42% fewer qubits to solve MaxCut on random 3-regular graphs, together with an improvement in the quality of the approximate solutions reached.


翻译:二次二次控制优化( QUBO) 是一系列广泛的优化问题, 包括许多实际应用。 为了精确地解决其难点, 已知古典算法需要指数化的时间, 并且已经设计了几种近似的方法来降低成本。 随着量子计算日益成熟, 已经提出了量子算法, 通过使用量子肛门或通用量子计算机来加速解决问题。 我们在这里应用“ 分与 ” 方法来减少最初的问题, 将其归结为一系列较小的问题, 这些小问题的解决办法可以组成一个单一的多元二进制非约束的优化实例, 且变量较少。 这一技术可以应用到任何 QUBO 实例, 并导致一种全经典或混合的量子级方法。 当使用量子超常值计算法( QAOA) 等量子超常时, 我们的提案导致双重优势: 量子资源大量减少, 特别是以 ~ 42% 的平均值 来解决随机的3 类方形图的质量解决方案。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员