The SOR-like iteration method for solving the absolute value equations~(AVE) of finding a vector $x$ such that $Ax - |x| - b = 0$ with $\nu = \|A^{-1}\|_2 < 1$ is investigated. The convergence conditions of the SOR-like iteration method proposed by Ke and Ma ([{\em Appl. Math. Comput.}, 311:195--202, 2017]) are revisited and a new proof is given, which exhibits some insights in determining the convergent region and the optimal iteration parameter. Along this line, the optimal parameter which minimizes $\|T_\nu(\omega)\|_2$ with $$T_\nu(\omega) = \left(\begin{array}{cc} |1-\omega| & \omega^2\nu \\ |1-\omega| & |1-\omega| +\omega^2\nu \end{array}\right)$$ and the approximate optimal parameter which minimizes $\eta_{\nu}(\omega) =\max\{|1-\omega|,\nu\omega^2\}$ are explored. The optimal and approximate optimal parameters are iteration-independent and the bigger value of $\nu$ is, the smaller convergent region of the iteration parameter $\omega$ is. Numerical results are presented to demonstrate that the SOR-like iteration method with the optimal parameter is superior to that with the approximate optimal parameter proposed by Guo, Wu and Li ([{\em Appl. Math. Lett.}, 97:107--113, 2019]). In some situation, the SOR-like itration method with the optimal parameter performs better, in terms of CPU time, than the generalized Newton method (Mangasarian, [{\em Optim. Lett.}, 3:101--108, 2009]) for solving the AVE.
翻译:用于解析绝对值方程的 SOR 类重迭法 = (AVE) 找到一个矢量 $x $x, $x - ⁇ x ⁇ - b = 0美元 = $nu = ⁇ A ⁇ -1 ⁇ 2 < 1 美元 。 Ke 和 Ma 提议的 SOR 类重迭法的趋同条件 ([em Appl. Math.comput.}, 311: 195-202, 2017], 并给出新的证据, 显示在确定集合区域和最佳递归度参数方面有一些洞察 。 在这条线上, 最优化的参数 $ ⁇ nu (\\\\ oma) = 美元 美元 ; 最优化的数值是 MAI1 和最优化的数值 。 最优化的数值是 MAI 和最优化的 MAI 。