The min-max problem, also known as the saddle point problem, is a class of optimization problems which minimizes and maximizes two subsets of variables simultaneously. This class of problems can be used to formulate a wide range of signal processing and communication (SPCOM) problems. Despite its popularity, most existing theory for this class has been mainly developed for problems with certain special convex-concave structure. Therefore, it cannot be used to guide the algorithm design for many interesting problems in SPCOM, where various kinds of non-convexity arise. In this work, we consider a block-wise one-sided non-convex min-max problem, in which the minimization problem consists of multiple blocks and is non-convex, while the maximization problem is (strongly) concave. We propose a class of simple algorithms named Hybrid Block Successive Approximation (HiBSA), which alternatingly perform gradient descent-type steps for the minimization blocks and gradient ascent-type steps for the maximization problem. A key element in the proposed algorithm is the use of certain regularization and penalty sequences, which stabilize the algorithm and ensure convergence. We show that HiBSA converges to some properly defined first-order stationary solutions with quantifiable global rates. To validate the efficiency of the proposed algorithms, we conduct numerical tests on a number of problems, including the robust learning problem, the non-convex min-utility maximization problems, and certain wireless jamming problem arising in interfering channels.


翻译:微轴问题,也称为马鞍点问题,是一组优化问题,可以同时将两个变量子组最小化和最大化。这组问题可以用来制定广泛的信号处理和通信(SPCOM)问题。尽管广受欢迎,但这一类的现有理论大多是针对某些特殊的 convex 组合结构的问题而形成的。因此,不能用它来指导SPCOM中许多有趣的问题的算法设计,这些问题产生各种非混凝土问题。在这项工作中,我们考虑的是一组单向的单向非Convex微轴问题,其中最小化问题由多个区块组成,是非Convex的渠道,是非Convex的渠道,而最大化问题则是(强势的)凝聚。我们提出了一系列简单的算法,称为混合屏障成功连接(HisBSA),它交替地为最小化区块执行梯度的梯度梯度梯度型步骤,而梯度是最大化问题。在拟议算法中的一个关键要素是使用某些正规化和惩罚顺序,包括稳定最稳健性的方法,我们确定了一定的算和可量化的升级的系统。我们展示了一定的系统。我们展示的系统。我们展示了在最接近性效率上的矩阵上,我们向了某种的矩阵,我们显示了某种水平的压压合。我们向了某种水平的计算。我们展示了某种压。我们。 我们显示的算。我们展示了一个最接近。我们。我们。我们向的算。我们展示了一个最接近。我们向的算。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
24+阅读 · 2020年3月11日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员