This paper presents a LiDAR odometry estimation framework called Generalized LOAM. Our proposed method is generalized in that it can seamlessly fuse various local geometric shapes around points to improve the position estimation accuracy compared to the conventional LiDAR odometry and mapping (LOAM) method. To utilize continuous geometric features for LiDAR odometry estimation, we incorporate tiny neural networks into a generalized iterative closest point (GICP) algorithm. These neural networks improve the data association metric and the matching cost function using local geometric features. Experiments with the KITTI benchmark demonstrate that our proposed method reduces relative trajectory errors compared to the other LiDAR odometry estimation methods.
翻译:本文介绍了一个称为通用LOMAM的LIDAR odology估计框架。 我们建议的方法是通用的,因为它可以无缝地结合各种局部几何形状,从而与传统的LIDAR odology和绘图方法(LOAM)相比,提高位置估计的准确性。为了利用连续几何特征进行LIDAR odology估计,我们把微小神经网络纳入一个普遍迭代最接近点的算法。这些神经网络改进了数据关联度和使用当地几何特征的匹配成本函数。与KITTI基准进行的实验表明,我们拟议的方法比其他LIDAR odology 估计方法减少了相对的轨迹错误。