Large language models have unlocked strong multi-task capabilities from reading instructive prompts. However, recent studies have shown that existing large models still have difficulty with information extraction tasks. For example, gpt-3.5-turbo achieved an F1 score of 18.22 on the Ontonotes dataset, which is significantly lower than the state-of-the-art performance. In this paper, we propose InstructUIE, a unified information extraction framework based on instruction tuning, which can uniformly model various information extraction tasks and capture the inter-task dependency. To validate the proposed method, we introduce IE INSTRUCTIONS, a benchmark of 32 diverse information extraction datasets in a unified text-to-text format with expert-written instructions. Experimental results demonstrate that our method achieves comparable performance to Bert in supervised settings and significantly outperforms the state-of-the-art and gpt3.5 in zero-shot settings.
翻译:大型语言模型通过阅读指导性提示解锁了强大的多任务能力。然而,最近的研究表明,现有的大型模型仍然在信息抽取任务上存在困难。例如,gpt-3.5-turbo 在 Ontonotes 数据集上仅实现了 18.22 的 F1 分数,明显低于最先进的性能。在本文中,我们提出 InstructUIE,基于指示调整的统一信息抽取框架,它可以统一地建模各种信息抽取任务并捕获任务间的依赖。为了验证所提出的方法,我们引入了 IE INSTRUCTIONS,一个专家撰写的具有 32 种不同信息抽取数据集的统一文本格式的基准。实验结果表明,我们的方法在监督设置中实现了与 Bert 相当的性能,并在零样本设置中明显优于最先进的和 gpt3.5。