Augmenting pre-trained language models with knowledge graphs (KGs) has achieved success on various commonsense reasoning tasks. However, for a given task instance, the KG, or certain parts of the KG, may not be useful. Although KG-augmented models often use attention to focus on specific KG components, the KG is still always used, and the attention mechanism is never explicitly taught which KG components should be used. Meanwhile, saliency methods can measure how much a KG feature (e.g., graph, node, path) influences the model to make the correct prediction, thus explaining which KG features are useful. This paper explores how saliency explanations can be used to improve KG-augmented models' performance. First, we propose to create coarse (Is the KG useful?) and fine (Which nodes/paths in the KG are useful?) saliency explanations. Second, to motivate saliency-based supervision, we analyze oracle KG-augmented models which directly use saliency explanations as extra inputs for guiding their attention. Third, we propose SalKG, a framework for KG-augmented models to learn from coarse and/or fine saliency explanations. Given saliency explanations created from a task's training set, SalKG jointly trains the model to predict the explanations, then solve the task by attending to KG features highlighted by the predicted explanations. On three commonsense QA benchmarks (CSQA, OBQA, CODAH) and a range of KG-augmented models, we show that SalKG can yield considerable performance gains -- up to 2.76% absolute improvement on CSQA.


翻译:以知识图形( KGs) 增强培训前语言模型, 包括知识图形( KGs), 在各种常见推理任务中取得了成功。 但是, 对于特定任务实例来说, KG 或 KG 的某些部分可能没有用处。 虽然 KG 推荐模型经常关注特定 KG 组件, KG 仍然总是被使用, 关注机制从未被明确教授应该使用 KG 组件。 同时, 突出的方法可以测量 KG 特性( 例如, 图形、 节点、 路径) 在多大程度上影响模型来做出正确的预测, 从而解释 KG 的哪些功能是有用的。 但是, 本文探索了如何使用突出的解释来提高 KG 推荐模型的性能。 首先, 我们提议创建粗略( KG 有用吗? ) 和细微( KG 的节点/ 路径有用? ) ) 突出的解释。 其次, 激励基于模型的监管, 我们分析 KG 和 CG 缩略度解释, 直接使用突出的解释来引导其注意力的 CG 。 第三, 我们提议从 CG 绝对解释 的 CG 和 CG 共同的 的 CG 任务框架。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Arxiv
8+阅读 · 2018年3月17日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
Top
微信扫码咨询专知VIP会员