Lightness and sparsity are two natural parameters for Euclidean $(1+\varepsilon)$-spanners. Classical results show that, when the dimension $d\in \mathbb{N}$ and $\varepsilon>0$ are constant, every set $S$ of $n$ points in $d$-space admits an $(1+\varepsilon)$-spanners with $O(n)$ edges and weight proportional to that of the Euclidean MST of $S$. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on $\varepsilon>0$, for constant $d\in \mathbb{N}$, of the minimum lightness and sparsity of $(1+\varepsilon)$-spanners, and observed that Steiner points can substantially improve the lightness and sparsity of a $(1+\varepsilon)$-spanner. They gave upper bounds of $\tilde{O}(\varepsilon^{-(d+1)/2})$ for the minimum lightness in dimensions $d\geq 3$, and $\tilde{O}(\varepsilon^{-(d-1)/2})$ for the minimum sparsity in $d$-space for all $d\geq 1$. In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner $(1+\varepsilon)$-spanners. We establish lower bounds of $\Omega(\varepsilon^{-d/2})$ for the lightness and $\Omega(\varepsilon^{-(d-1)/2})$ for the sparsity of such spanners in Euclidean $d$-space for all constant $d\geq 2$. Our lower bound constructions generalize previous constructions by Le and Solomon, but the analysis substantially simplifies previous work, using new geometric insight, focusing on the directions of edges. Next, we show that for every finite set of points in the plane and every $\varepsilon\in (0,1]$, there exists a Euclidean Steiner $(1+\varepsilon)$-spanner of lightness $O(\varepsilon^{-1})$; this matches the lower bound for $d=2$. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis.
翻译:亮度和偏度是以美元计算的地平度值的自然参数。 典型的结果表明, 当美元和美元平面值是恒定的时, 每设定美元以美元平面值為美元, 美元以美元平面值為美元, 以美元平面值為一美元平面值, 以美元平面值為一美元平面值, 以美元平面值為一美元平面值, 以美元平面值為一美元平面值, 以美元平面值為一美元平面值, 以美元平面值為一美元平面值, 以美元平面值為一美元平面值, 以美元平面值為一美元平面值, 以美元平面值平面值為一美元平面值, 以美元平面值為一美元平面值的平面值, 以美元平面值平面值為一美元平面值, 以美元平面值為一美元平面值的平面值, 以美元平面值平面值為一美元平面值平面值平面值, 平面值平面值, 平面值为一美元平面值平面值, 平面值平面值, 平面值平面值平面值为美元平面值, 平面值, 平面值平面值平面值, 平面值, 以美元平面值, 平面值, 平面值平面值, 平面值为一美元平面值, 平面值, 平面值, 平面值, 平面值, 平面值, 平面值为美元平面值, 平面值, 平面值, 平面值, 平面值, 平面, 平面, 平面值为一, 平面值为一, 平面, 平面, 平面值, 平面值, 平面值, 平面值平面值平面值, 平面值, 平面值, 平面值平面值, 平面值,以美元平面平面平面值, 平面值,以美元平面,以美元平面,以美元平面