项目名称: 一类新颖荧光材料五取代四氢嘧啶的合成、光学特性以及结构-性质关系的研究

项目编号: No.21272111

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 朱秋华

作者单位: 南方医科大学

项目金额: 80万元

中文摘要: 近年来具有聚集诱导发光(aggregation-induced emission, AIE)特性的有机小分子荧光化合物在多种应用领域显示了其独特的优越性,如化学/生物探针和有机电致发光二级管等。我们近期通过高效、操作简单、反应条件温和的五组分反应(five-component reaction, 5CR)合成了新型五取代四氢嘧啶6,并发现6是一类AIE效应强、荧光效率高以及结构新颖的有机小分子荧光材料(发明专利CN102250015A,PCT/CN2011/084601)。我们还发现6具有发射波长决定于分子堆积模式而与聚集体形态无关(morphology-independent emission, MIE)的特性。本项目一方面将重点研究MIE特性的产生机理,另一方面拟利用5CR在合成上的优势进行结构-性质关系研究,旨在理解MIE现象以及发展具有知识产权、高光学性能、经济适用的荧光材料。

中文关键词: 聚集诱导发光;五取代四氢嘧啶;发光机理;设计合成;荧光探针

英文摘要: In the past decade, organic small molecular fluorophores with aggregation-induced emission (AIE) characteristics have shown their distinct advantages in many application areas, such as chemo/biosensors, organic light-emitting diode (OLED), etc. We recently synthesized a series of novel pentasubstituted tetrahydropyrimidines 6 by the five-component reactions (5CRs) with the advantages of high efficiency, mild reaction conditions, operational simplicity as well as readily available reactants and found that 6 are novel AIE fluorophores with high fluorescence efficiency (Pentent CN102250015a, PCT/CN2011/084601). In addition, 6 show another unusual optical property, morphology-independent emission (MIE) property. The project will focus on the investigations of the origin of the MIE property as well as the structure-property relationships, aimed at understanding the MIE phenomenon and developing economical fluorescent material with high optical properties and intellectual property rights.

英文关键词: aggregation-induced emission;pentasubstituted tetrahydropyrimidines;emission mechanism;design and synthesis;fluorescence probes

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
《人工智能在化学领域的应用全景》白皮书
专知会员服务
34+阅读 · 2022年1月22日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
44+阅读 · 2020年9月3日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
《人工智能在化学领域的应用全景》白皮书
专知会员服务
34+阅读 · 2022年1月22日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
44+阅读 · 2020年9月3日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员