We consider generalized operator eigenvalue problems in variational form with random perturbations in the bilinear forms. This setting is motivated by variational forms of partial differential equations such as the diffusion equation or Maxwell's equations with random material laws, for example. The considered eigenpairs can be of higher but finite multiplicity. We investigate stochastic quantities of interest of the eigenpairs and discuss why, for multiplicity greater than 1, only the stochastic properties of the eigenspaces are meaningful, but not the ones of individual eigenpairs. To that end, we characterize the Fr\'echet derivatives of the eigenpairs with respect to the perturbation and provide a new linear characterization for eigenpairs of higher multiplicity. As a side result, we prove local analyticity of the eigenspaces. Based on the Fr\'echet derivatives of the eigenpairs we discuss a meaningful Monte Carlo sampling strategy for multiple eigenvalues and develop an uncertainty quantification perturbation approach. Numerical examples are presented to illustrate the theoretical results.
翻译:我们考虑的是二线形形态中具有随机扰动作用的通用操作员电子价值变异形式上的普遍操作员电子价值问题。 这种变异形式是由部分差异方程式(如扩散方程式或马克斯韦尔的等式)的变异形式驱动的。 例如,考虑的egenpair可以是更高但有限的多种材料法。 我们调查了对eigenpair的兴趣的随机量,并讨论了为什么,对于大于1的多重性来说,只有eigenspasi空间的抽取特性才有意义,而不是个别的egenpair。 为此,我们将eigenpairs的Fr\'echet衍生物定性为扰动性方程式,并为高倍数的egenpair提供了新的线性定性。作为附带结果,我们证明了egenspasi空间的局部性异常性。基于eigenpairs的Fr\'echet 衍生物,我们讨论的是针对多个egenpairs的有意义的蒙特卡洛采样策略,而不是单个的egenpairs。我们为多重egenvalicalal-blogical 方法所展示的例证。