To improve the poor performance of distributed operation and non-scalability of centralized operation in traditional cell-free massive MIMO, we propose a cell-free distributed collaborative (CFDC) massive multiple-input multiple-output (MIMO) system based on a novel two-layer model to take advantages of the distributed cloud-edge-end collaborative architecture in beyond 5G (B5G) internet of things (IoT) environment to provide strong flexibility and scalability. We further ultilize the proposed CFDC massive MIMO system to support the low altitude three-dimensional (3-D) coverage scenario with unmanned aerial vehicles (UAVs), while accounting for 3-D Rician channel estimation, user-centric association and different scalable receiving schemes. Since coexisted UAVs and ground users (GUEs) cause greater interference, we ultilize user-centric association strategy and minimum-mean-square error (MMSE) channel state information (CSI) estimation to obtain the estimated CSI of UAVs and GUEs. Under the CFDC scenarios, scalable receiving schemes as maximum ratio combing (MRC), partial zero-forcing (P-ZF) and partial minimum-mean-square error (P-MMSE) can be performed at edge servers and the closed-form expressions for uplink spectral efficiency (SE) are derived. Based on the derived expressions, we propose an efficient power control algorithm by solving a multi-objective optimization problem (MOOP) between maximizing the average SE of UAVs and GUEs simultaneously with Deep Q-Network (DQN). Numerical results verify the accuracy of the derived closed-form expressions and the effectiveness of the coexisted UAVs and GUEs transmission scheme in CFDC massive MIMO systems. The SE analysis under various system parameters offers numerous flexibilities for system optimization.
翻译:为了提高传统无线通信系统中分布式操作和集中式操作不可扩展性的性能,本文提出了一种基于全新双层模型的协作式分布式 massive MIMO 系统,利用分布式云边缘协作式架构在 B5G IoT 环境中具有强大的灵活性和可扩展性。 进一步利用所提出的 CFDC massive MIMO 系统支持低空三维(3-D)覆盖场景,其中涉及无人机(UAV)并账户3-D Rician 频道估计、用户中心关联和不同可缩放接收方案。由于共存的 UAV 和地面用户(GUE)造成的干扰较大,因此我们利用用户中心关联策略和最小均方误差(MMSE)信道状态信息(CSI)估计来获取 UAV 和 GUE 的估计 CSI。在 CFDC 场景下,可在边缘服务器中执行最大比合并(MRC)、部分零强制(P-ZF)和部分最小均方误差(P-MMSE)等可缩放接收方案,并推导出上行频谱效率(SE)的闭合形式表达式。基于推导出的表达式,本文通过 Deep Q-Network(DQN)求解多目标优化问题(MOOP)来提出一种有效的功率控制算法,即同时最大化 UAV 和 GUE 的平均 SE。数值结果验证了闭合形式表达式的准确性以及 CFDC massive MIMO 系统中并存的 UAV 和 GUE 传输方案的有效性。在各种系统参数下进行的 SE 分析为系统优化提供了多种选择。