Extracting useful information from the user history to clearly understand informational needs is a crucial feature of a proactive information retrieval system. Regarding understanding information and relevance, Wikipedia can provide the background knowledge that an intelligent system needs. This work explores how exploiting the context of a query using Wikipedia concepts can improve proactive information retrieval on noisy text. We formulate two models that use entity linking to associate Wikipedia topics with the relevance model. Our experiments around a podcast segment retrieval task demonstrate that there is a clear signal of relevance in Wikipedia concepts while a ranking model can improve precision by incorporating them. We also find Wikifying the background context of a query can help disambiguate the meaning of the query, further helping proactive information retrieval.
翻译:从用户历史中提取有用信息,以明确了解信息需求,是积极主动的信息检索系统的一个关键特征。关于理解信息和相关性,维基百科可以提供智能系统所需要的背景知识。这项工作探索如何利用使用维基百科概念的查询的背景来改进噪音文字上的主动信息检索。我们开发了两种模型,使用将维基百科主题与相关模型联系起来的实体。我们围绕播客段检索任务进行的实验表明,维基百科概念中存在一个明确的相关性信号,而排名模型可以通过纳入这些信号来提高准确性。我们还认为,维基百科查询的背景信息背景的维基解密有助于模糊查询的含义,进一步帮助积极主动的信息检索。