项目名称: EAST 高功率等离子体中边界辐射对能量约束的影响及辐射控制实验研究

项目编号: No.11305214

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 段艳敏

作者单位: 中国科学院合肥物质科学研究院

项目金额: 27万元

中文摘要: 利用杂质注入技术主动增加等离子体边界的辐射功率是减小流向第一壁热流的有效方法,但多数托卡马克装置上的实验发现,边界高的辐射功率损失会使等离子体的能量约束变差。这可能与等离子体中一些基本参数分布的变化有关,但具体物理过程和机制仍不清楚。在高辐射功率损失条件下,保持好的能量约束和可容忍的杂质水平是一直以来的研究目标。本项目将依托于全超导托卡马克EAST实验平台,基于EAST上现有的辐射量热诊断系统,建立辐射功率实时反馈控制系统并开展高功率条件下的杂质注入实验,通过对辐射总功率和辐射功率分布的控制,研究边界辐射功率损失对等离子体基本参数分布的影响,进一步揭示边界辐射冷却效应对能量约束的影响机制。为EAST高功率长脉冲运行寻找合适的辐射控制模式并为发展ITER运行条件下的辐射热流移除经验定标公式提供可校核的基础数据。

中文关键词: 辐射功率;杂质注入;反馈控制;等离子体约束;EAST

英文摘要: The heat flux to plasma facing components can be reduced by radiation cooling using impurities seeding technique. However, investigations on many tokamaks have found that the energy confinement tends to deteriorate in high radiation power condition,which probably is related with the profile changes of some plasma parameters. The mechanism of the confinement changes is not clear presently. Plasma operation combining the requirements of high radiation power and good confinement with tolerable impurity pollution is the goal of current research.The research subject in this report will be carried out on the EAST device.The radiation real-time feedback control system will be developed based on the EAST bolometer diagnostic and the impurities seeding experiments will be done on high power plasmas.The effect of high edge radation power loss on the the profiles of basic plasma parameters will be studied by controlling the total radiation power and the radiation power distribution, which can help further understand the mechanism of confinement changes caused by radiation cooling. Purposes of the research is to find the proper radiation control method for EAST high power long pulse discharges and help develop and benchmark empirical scalings for radiative power removal under ITER-like conditions.

英文关键词: Radiated power;impurity seeding;feedback control;plasma confinement;EAST

成为VIP会员查看完整内容
0

相关内容

专知会员服务
61+阅读 · 2021年9月20日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
29+阅读 · 2021年4月12日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
42+阅读 · 2021年2月8日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关VIP内容
专知会员服务
61+阅读 · 2021年9月20日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
29+阅读 · 2021年4月12日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
42+阅读 · 2021年2月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员