Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.
翻译:文本检索是一个长期的信息搜索研究课题, 需要有一个系统将相关信息资源返回自然语言用户的查询。 从经典的检索方法到基于学习的排名功能, 基础检索模型随着不断的技术创新而不断演变。 设计有效的检索模型, 关键在于如何学习文本表达方式和模型相关性匹配。 预先培训的语言模型(PLMs)最近的成功展示了通过利用精巧的PLM模型能力开发更有能力的文本检索方法。 与以往的密度检索调查不同, 我们可以有效地学习潜在代表空间的查询和文本的表述,并进一步在密集的矢量之间构建用于相关模型的语义匹配功能。 这种检索方法被称为密集检索,因为它使用密集的矢量(a.k.a., 嵌入)来代表文本。 考虑到密集检索方面的快速进展, 我们系统审查了基于PLM的精密密度检索的最新进展。 与以往的密度检索调查不同, 我们从新的视角来组织相关工作的四个主要方面, 包括结构、 培训、 索引和链接的整合和链接。 我们为每个数据库提供一个彻底的版本的检索、 提供了我们的主要检索和链接 提供了一个目标。