Legged robot navigation in extreme environments can hinder the use of cameras and laser scanners due to darkness, air obfuscation or sensor damage. In these conditions, proprioceptive sensing will continue to work reliably. In this paper, we propose a purely proprioceptive localization algorithm which fuses information from both geometry and terrain class, to localize a legged robot within a prior map. First, a terrain classifier computes the probability that a foot has stepped on a particular terrain class from sensed foot forces. Then, a Monte Carlo-based estimator fuses this terrain class probability with the geometric information of the foot contact points. Results are demonstrated showing this approach operating online and onboard a ANYmal B300 quadruped robot traversing a series of terrain courses with different geometries and terrain types over more than 1.2km. The method keeps the localization error below 20cm using only the information coming from the feet, IMU, and joints of the quadruped.
翻译:极端环境中的牵引机器人导航会因黑暗、空气模糊或感官损坏而阻碍摄像机和激光扫描仪的使用。 在这些条件下,自行感知感知感应将继续可靠地发挥作用。 在本文中,我们建议采用纯自觉的本地化算法,将几何和地形级的信息结合在一起,在以前的地图中将一个牵引机器人定位。首先,地形分类算出脚从感知脚力进入特定地形级的概率。然后,以蒙特卡洛为基地的测地仪将这种地形级的概率与足足接触点的几何信息连接起来。结果显示,这一方法正在在线操作,在Anymal B300上运行,在Anymal B300四重机器人穿行,在1.2公里以上的不同地形和地形类型的一系列地形课程中运行。该方法仅使用脚部、IMU和四重连接点连接的信息,将定位误差误差维持在20厘米以下。