Cardio/cerebrovascular diseases (CVD) have become one of the major health issue in our societies. But recent studies show that the present pathology tests to detect CVD are ineffectual as they do not consider different stages of platelet activation or the molecular dynamics involved in platelet interactions and are incapable to consider inter-individual variability. Here we propose a stochastic platelet deposition model and an inferential scheme to estimate the biologically meaningful model parameters using approximate Bayesian computation with a summary statistic that maximally discriminates between different types of patients. Inferred parameters from data collected on healthy volunteers and different patient types help us to identify specific biological parameters and hence biological reasoning behind the dysfunction for each type of patients. This work opens up an unprecedented opportunity of personalized pathology test for CVD detection and medical treatment.
翻译:心血管/心血管疾病(CVD)已成为我们社会的主要健康问题之一,但最近的研究表明,目前用于检测CVD的病理测试是无效的,因为它们不考虑板板激活的不同阶段,也不考虑板板互动涉及的分子动态,无法考虑个人之间的变异性。我们在此提议采用随机切分的板块沉积模型和推论方法来估计具有生物意义的模型参数,使用近似贝叶斯计算法来估计具有生物意义的模型参数,并有一个对不同类型病人进行最大区分的简要统计。根据健康志愿者和不同病人类型收集的数据推论的参数,帮助我们确定具体的生物参数,从而确定每种类型病人功能失调背后的生物推理。这项工作为CVD检测和治疗提供了前所未有的个人化病理测试机会。