There has been a substantial amount of research on computer methods and technology for the detection and recognition of diabetic foot ulcers (DFUs), but there is a lack of systematic comparisons of state-of-the-art deep learning object detection frameworks applied to this problem. With recent development and data sharing performed as part of the DFU Challenge (DFUC2020) such a comparison becomes possible: DFUC2020 provided participants with a comprehensive dataset consisting of 2,000 images for training each method and 2,000 images for testing them. The following deep learning-based algorithms are compared in this paper: Faster R-CNN, three variants of Faster R-CNN and an ensemble method; YOLOv3; YOLOv5; EfficientDet; and a new Cascade Attention Network. For each deep learning method, we provide a detailed description of model architecture, parameter settings for training and additional stages including pre-processing, data augmentation and post-processing. We provide a comprehensive evaluation for each method. All the methods required a data augmentation stage to increase the number of images available for training and a post-processing stage to remove false positives. The best performance is obtained Deformable Convolution, a variant of Faster R-CNN, with a mAP of 0.6940 and an F1-Score of 0.7434. Finally, we demonstrate that the ensemble method based on different deep learning methods can enhanced the F1-Score but not the mAP. Our results show that state-of-the-art deep learning methods can detect DFU with some accuracy, but there are many challenges ahead before they can be implemented in real world settings.
翻译:对检测和识别糖尿病溃疡的计算机方法和技术进行了大量研究,发现和识别糖尿病溃疡的计算机方法和技术(DFUU),但对这一问题应用的最先进的深学习对象检测框架缺乏系统的比较。随着最近作为DFU挑战(DFUU2020)的一部分进行的开发和数据共享,可以进行这样的比较:DFUC2020为参与者提供了一套全面的数据集,其中包括每套方法培训的2 000张图像和2 000张测试方法的图像。本文比较了以下深层次的基于学习的算法:更快R-CNN、三种变异的R-CNNNN和一套精密的混合方法;YOLOv3;YOLOv5;高效的Det;以及一个新的累加关注网络。对于每一种深层的学习方法,我们都详细描述了培训的模型结构、参数设置以及包括预处理、数据增强和后处理在内的其他阶段。我们对每一种方法都进行了全面的评价。所有方法都需要有一个数据增强阶段,但需要有一个数据增强阶段,以便增加用于培训和后处理的图像数量,在R-N-N-R-N-R-R-R-R-R-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-A-S-S-S-S-S-S-S-S-A-S-S-S-S-S-S-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-