Modeling the dynamics of soft robot limbs with electrothermal actuators is generally challenging due to thermal and mechanical hysteresis and the complex physical interactions that can arise during robot operation. This article proposes a neural network based on long short-term memory (LSTM) to address these challenges in actuator modeling. A planar soft limb, actuated by a pair of shape memory alloy (SMA) coils and containing embedded sensors for temperature and angular deflection, is used as a test platform. Data from this robot are used to train LSTM neural networks, using different combinations of sensor data, to model both unidirectional (one SMA) and bidirectional (both SMAs) motion. Open-loop rollout results show that the learned model is able to predict motions over extraordinarily long open-loop timescales (10 minutes) with little drift. Prediction errors are on the order of the soft deflection sensor's accuracy, even when using only the actuator's pulse width modulation inputs for learning. These LSTM models can be used in-situ, without extensive sensing, helping to bring soft electrothermally-actuated robots into practical application.


翻译:由于热和机械歇斯底里以及机器人操作期间可能出现的复杂的物理互动,模拟软体机器人肢体的动态通常具有挑战性,因为机器人操作期间的热和机械歇斯底里以及复杂的物理相互作用,因此,这一条提议以长期短期内存(LSTM)为基础建立一个神经网络,以应对动力模拟过程中的这些挑战。由一组形状内存合合合合(SMA)圆圈驱动并含有内嵌温度和角偏移传感器的软体肢,被用作测试平台。该机器人的数据用于培训LSTM神经网络,使用不同的传感器数据组合,以模拟单向(一个SMA)和双向(两个SMAs)运动。开放式滚动结果显示,所学模型能够预测超长的开放室内时标(10分钟)的动作。预测误差是软偏移传感器的准确性。即使只使用动作器的脉冲宽度调制输入来学习,这些LSTM模型也可以在不作广泛应用的情况下,将软性热能模型用于实际的机器人。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
44+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2019年7月11日
Arxiv
10+阅读 · 2018年2月4日
Arxiv
5+阅读 · 2018年1月16日
Arxiv
5+阅读 · 2017年11月30日
Arxiv
3+阅读 · 2015年11月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员