Modeling the dynamics of soft robot limbs with electrothermal actuators is generally challenging due to thermal and mechanical hysteresis and the complex physical interactions that can arise during robot operation. This article proposes a neural network based on long short-term memory (LSTM) to address these challenges in actuator modeling. A planar soft limb, actuated by a pair of shape memory alloy (SMA) coils and containing embedded sensors for temperature and angular deflection, is used as a test platform. Data from this robot are used to train LSTM neural networks, using different combinations of sensor data, to model both unidirectional (one SMA) and bidirectional (both SMAs) motion. Open-loop rollout results show that the learned model is able to predict motions over extraordinarily long open-loop timescales (10 minutes) with little drift. Prediction errors are on the order of the soft deflection sensor's accuracy, even when using only the actuator's pulse width modulation inputs for learning. These LSTM models can be used in-situ, without extensive sensing, helping to bring soft electrothermally-actuated robots into practical application.
翻译:由于热和机械歇斯底里以及机器人操作期间可能出现的复杂的物理互动,模拟软体机器人肢体的动态通常具有挑战性,因为机器人操作期间的热和机械歇斯底里以及复杂的物理相互作用,因此,这一条提议以长期短期内存(LSTM)为基础建立一个神经网络,以应对动力模拟过程中的这些挑战。由一组形状内存合合合合(SMA)圆圈驱动并含有内嵌温度和角偏移传感器的软体肢,被用作测试平台。该机器人的数据用于培训LSTM神经网络,使用不同的传感器数据组合,以模拟单向(一个SMA)和双向(两个SMAs)运动。开放式滚动结果显示,所学模型能够预测超长的开放室内时标(10分钟)的动作。预测误差是软偏移传感器的准确性。即使只使用动作器的脉冲宽度调制输入来学习,这些LSTM模型也可以在不作广泛应用的情况下,将软性热能模型用于实际的机器人。