In this paper, we implement Neural Ordinary Differential Equations in a Variational Autoencoder setting for generative time series modeling. An object-oriented approach to the code was taken to allow for easier development and research and all code used in the paper can be found here: https://github.com/simonmoesorensen/neural-ode-project The results were initially recreated and the reconstructions compared to a baseline Long-Short Term Memory AutoEncoder. The model was then extended with a LSTM encoder and challenged by more complex data consisting of time series in the form of spring oscillations. The model showed promise, and was able to reconstruct true trajectories for all complexities of data with a smaller RMSE than the baseline model. However, it was able to capture the dynamic behavior of the time series for known data in the decoder but was not able to produce extrapolations following the true trajectory very well for any of the complexities of spring data. A final experiment was carried out where the model was also presented with 68 days of solar power production data, and was able to reconstruct just as well as the baseline, even when very little data is available. Finally, the models training time was compared to the baseline. It was found that for small amounts of data the NODE method was significantly slower at training than the baseline, while for larger amounts of data the NODE method would be equal or faster at training. The paper is ended with a future work section which describes the many natural extensions to the work presented in this paper, with examples being investigating further the importance of input data, including extrapolation in the baseline model or testing more specific model setups.


翻译:在本文中,我们在变异式自动自动编码器模型中执行神经普通差异等式,用于基因化时间序列建模。对代码采取了面向目标的方法,以便于开发和研究,本文中所使用的所有代码都可以在这里找到:https://github.com/simonmoesorensen/neural-ode-project https://github.com/simonmoesoren/neural-ode-project 。结果最初重新生成,重建比起一个基线L-Short Teral Memorine NautoEncoder更快速的模型。该模型随后扩展,使用一个LSTM 扩展的编码器,并受到由时间序列序列组成的更复杂的数据挑战。模型显示,由时间序列组成的时间序列构成的春季自然振动振荡。模型有希望,并且能够重建所有复杂数据的真实轨迹,而SARME系统的数据在模型中也比起更精确的基线值。在模型中找到了一个小的模型,在模型中,在模型中可以找到这一基线数据,在模型中,在模型中可以进行更精确的模型中进行更精确的数据是用来进行更精确的,在进行更精确的模型,在进行更精确的模型,在模型中找到,在进行更多的数据,在模型是用来进行更精确的模型,在模型,在模型,在模型中,在模型中,在模型中进行更精确的数据是用来进行更精确的数据是用来进行更精确的计算。在做到最终的模型是用来进行,在进行,在进行,在做到在做一个基本的数据是用来进行更多的数据,在模型中,在模型的计算,在进行精确的数据是用来进行更精确的计算。

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
3+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关论文
相关基金
国家自然科学基金
3+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员