Adversarial attacks seriously threaten the high accuracy of face anti-spoofing models. Little adversarial noise can perturb their classification of live and spoofing. The existing adversarial attacks fail to figure out which part of the target face anti-spoofing model is vulnerable, making adversarial analysis tricky. So we propose fine-grained attacks for exposing adversarial vulnerability of face anti-spoofing models. Firstly, we propose Semantic Feature Augmentation (SFA) module, which makes adversarial noise semantic-aware to live and spoofing features. SFA considers the contrastive classes of data and texture bias of models in the context of face anti-spoofing, increasing the attack success rate by nearly 40% on average. Secondly, we generate fine-grained adversarial examples based on SFA and the multitask network with auxiliary information. We evaluate three annotations (facial attributes, spoofing types and illumination) and two geometric maps (depth and reflection), on four backbone networks (VGG, Resnet, Densenet and Swin Transformer). We find that facial attributes annotation and state-of-art networks fail to guarantee that models are robust to adversarial attacks. Such adversarial attacks can be generalized to more auxiliary information and backbone networks, to help our community handle the trade-off between accuracy and adversarial robustness.
翻译:对抗性攻击严重地威胁着面部防污模型的高度精确性。 对抗性噪音会干扰对活物和口服物的分类。 现有的对抗性攻击未能查明目标中哪个部分面部防污模型的脆弱性, 使得对抗性分析变得棘手。 因此, 我们提出细微的对抗性攻击, 以暴露面部防污模型的对抗性脆弱性。 首先, 我们提议了语义特征增强模块( SFA), 这使得对抗性噪音的语义和觉悟能够生存和掩饰特征。 SFA 认为, 在面对反毒模式的情况下, 模型的数据和纹质偏差是对比性的, 平均将攻击成功率提高近40%。 第二, 我们根据SFA 和多塔克 网络提出细微的对抗性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性实例, 并辅佐辅助信息。 我们评估了四个主干网( VGG、 Resnet、 Dennet 和 Swintalimal 网络之间的帮助性攻击性攻击性攻击性攻击性攻击性攻击性硬性攻击性攻击性攻击性攻击性硬性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性硬性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性网络性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性